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Abstract

A new method for modelling chromatographic responses is presented as a critical piece
for the achievement of automated development of analytical methods. This methodology
is based on four parts. First, we propose to use a very little set of statistical equations to
create predictive models for retention time based responses as the apex, the width and the
asymmetry of peaks. Second, an experimental design is set up to realize experiments. Third,
using grid search over the domain, multi criteria decision is taken with respect to different
local or global optimization criteria, used as desirability functions. This allows finding an
optimal chromatogram. Fourth, we advice to investigate how the predictive error of the
models propagates around optimal solution. This allows to give confidence in the optimal
solution, in finding a set of zones that presumably will give an acceptable solution. Design
spaces can be derived with a similar technique. The approach is exemplified with a real
case and predictions of models at optimal analytical conditions are validated through new
experiments. Flexibility is left over all the presented methodology.
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1 Introduction

In analytical chemistry, the chromatographic techniques are widely used in different
fields of activity such as chemical, pharmaceutical, biomedical, environmental and
food analysis. Thus, the selection of the most appropriate experimental conditions
allowing the separation of compounds of interest in various matrices is a matter
of a very particular interest. Pharmaceutical industries are of course concerned by
these problems and are more especially interested by all new approach allowing to
separate their compounds properly and quickly in order to quantify them. Indeed,
the analytical step is a crucial phase during the development of new drugs since the
different decisions are taken based on results generated by one or more analytical
methods. Amongst the chromatographic techniques, Liquid Chromatography (LC)
is probably the most common technique to fulfil this objective.

Nowadays, the development of analytical methods in LC is still time consuming
and not always under the perfect control of analysts. This is due to the fact that most
of the parameters to manage to obtain acceptable separation conditions have com-
plex effects on the chromatogram. The problem becomes even more complicated
when the matrix is complex and contains many compounds with physico-chemical
properties that are not necessarily known.

A lot of contributions from various authors about optimization and methods devel-
opment have been reported over the last 20 years. The use of design of experiments
to find optimal conditions is now largely accepted in chromatography. However, it
is often problematic to take into account the total complexity of the problems and
it is probably the reason why actual softwares in chromatography still don’t allow
the optimization with many parameters.

Schoenmakers (1986) reported formulations to compute global or limited optimiza-
tion criteria used for optimization [1]. Massart (1990) and Snyder (1997) illustrated
different tools for methods development [2,3]. Vanbel (1998) summarized the need
of adequate and flexible optimization criteria, adapted to practical situations, and
the need to provide various and flexible experimental designs and modelling equa-
tions [4]. Dewé et al. (2004) also proposed a methodology to optimize several ana-
lytical conditions [S]. Both last references agree on the fact that modelling directly
chromatographic criteria to find some optimum configuration is not good practice
due to discontinuities in modelled responses. It is proposed to model retention times
as characteristic of chromatograms instead of criteria. After, these criteria are de-
rived from the retention times and a multi-criteria optimization can be envisaged.
The main problems encountered in these methodologies is the assumed indepen-
dence between responses. This leads to many equations, which is not recommend-
able, and errors can occur (see later). Finally, Vanbel and Dewé et al. completely
ignore error of the models in their predicted optima. In this paper, these methodolo-
gies are generalized, allowing to optimize in an automated way as many parameters



and criteria as needed by the analysis.

Changing parameters of the LC leads to different retention times for one analyte
in the output chromatograms, as shown in Figure 1. The purpose of this work is
that, following the practice of design of experiments [6,7], it is possible to find
some optimal parameters configurations, considering different criteria computed
on chromatograms, such as the minimal separation, the total retention time or the
asymmetry of the peaks, for instance.
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Figure 1. Example: different analytical conditions lead to different retention times for the
analytes (reconstructed chromatograms, method from Dewé et al. (2004) [5]). Chromato-
graphic parameters are the nature of the stationary phase, the mobile phase pH, the nature of
the organic modifiers and the gradient slopes (min.) used in analysis. Left: Column XBridge
Phenyl with acetonitrile in the buffer, pH 5 and, gradient 5%-95% of organic modifier real-
ized in 20 minutes. Right: same column and solvent, pH 2.6, and gradient in 30 minutes

2 Objectives and main steps of the methodology

We present a methodology to predict, with a known level of confidence, the best
tuning parameters of a HPLC in the range of possible analytical conditions in order
to get the best chromatogram possible over the domain of potential mixtures. This
global target can be subdivided into several smaller objectives.

The first objective aims at developing, from the results of experiments designed for
this very purpose, predictive models of the peak retention times with respect to the
HPLC tuning parameters. The second objective is to use these predictive models
in order to find optimal chromatographic analytical conditions with respect to dif-
ferent criteria to characterize the quality of a chromatogram. This is a multicriteria
optimization problem. The third objective aims at investigating the confidence of
the predicted optimal conditions through a Monte-Carlo study of the propagation of
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Figure 2. main steps of the presented methodology

the models predictive errors into the optimized criteria. Finally, this methodology
allows to identify a design space if existing in the explored domain [8].

Figure 2 presents the main steps of our methodology. First, a designed experiment
is set up in order to explore as best as possible the ranges of possible HPLC param-
eters. These experimental conditions are applied to a given complex mixture and
supply related chromatograms. Second, for each chromatogram, the retention time
of each compound is identified from the observed peaks. Third, statistical models
are developed to predict the retention times of each mixture from the analytical con-
ditions. Models have to be precise enough in order to have good predictive capabil-
ities. This includes an adequate choice of the responses to be modelled, a variables
selection step and the application of adequate statistical techniques to quantify the
quality of the fit and validate the models. Then, criteria are defined to characterize
what is a ”good” chromatogram and predictive models are used to predict expected
chromatograms and related criteria in the domain of explored analytical conditions.
Derringer desirability functions and index are proposed to summarize the criteria to
be optimized. Finally, optimal conditions are searched out of these predictions and
their accuracy are analysed by Monte-Carlo propagation of the models prediction
errors into the calculated criteria. The same technique can be applied on each point
of the experimental domain to find a design space, if it exists.

Note that height of peaks of chromatograms has a limited interest for optimizing
separation and is not concerned in this study. W. Dewé et al. (2004) [5] expose
some formulations to reconstruct the height of peaks from their estimated area. It
can easily be included in our methodology.



3 Details of the methodology

3.1 Design of experiments

Let’s define F continuous or discrete tuning parameters of interest (i, ..., Ty, ..., Tr)
for the HPLC device under study. Each continuous factor (e.g. pH) is defined over
a domain of interest [Ly, Us] and each discrete factor (e.g. column) by a set of ny
levels. Let’s note y the experimental domain of x’s.

Design of experiments and response surface methodology provide several methods
to explore such domain y according to the anticipated complexity of the factors
effects on the responses (the peaks positions) [9]. Full factorial designs may be
appropriate when the experiments are robotized. Central composite or D-Optimal
designs are also well adapted in this context. Let’s note X the resulting (N X F)
design matrix.

The N experiments consist of applying each design factor setting x; = (x;1, ..., X;r)
to a chosen (complex) mixture of M compounds ¢ = (cy, ..., cj, ..., cy) and provide
N chromatograms with, for each of them, M more or less separated peaks.

Factors and levels to be used have to be identified by the analyst depending on the
nature of the analytical method and the compounds to be separated.

3.2 Chromatogram discretization

Figure 3 illustrates the discretization process of the chromatograms. This is the
main manual part of the methodology although current studies show that an au-
tomation of this process is possible [10],[11]. From each chromatogram, three re-
tention times can be extracted: the retention times at the beginning, at the apex and
at the end of the peaks at baseline-height (B, A and E, respectively). Ty denotes the
dead time of the system, associated to the analytical column. The retention times
for the N chromatograms and the M components can be stored in three vectors
B, A and E of size (N.M). These retention times are ordered as N blocks of M
components in these vectors.

Currently, it is still the task of the analyst to identify manually peaks in chro-
matograms. Patterns can be found in the DAD chromatogram, looking at the ab-
sorbance values for a specific time (1-D spectrum). For one peak corresponds one
pattern. Difficulties of identifications can arise, e.g. when there are co-eluted peaks
or when there are impurities, which possess nearly the same absorbance spectrum
than relevant analytes.
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Figure 3. Raw chromatogram with the positions of discretized points

3.3  Models responses definition

The first step in the development of predictive models of the retention times with re-
spect to HPLC analytical conditions, is to decide which responses to model. Dewé
et al. [5] propose to create separate models for each retention time B, A and E and
for each compound. Unfortunately, with this approach, uncertainty of the predic-
tion of the models can lead to inversion in the predicted positions within a peak. For
instance, it is undesirable that the predicted apex of a peak has a smaller retention
time than its beginning, which is physically impossible. Moreover, there is little
interest to try to make one model for each retention times vector because pairwise
correlations between them are very close to 1. Modelling B, A and E leads to model
three times non independent information. Deriving separate models for each reten-
tion times vector and each compound can also be heavy to handle in the subsequent
steps of the methodology.

This paper proposes two enhancements to this classical approach. First, it suggests
to build, for each response of interest, one single global model involving all F ex-
perimental factors and all M compounds. In this framework, it is suited to transform
retention times B, A and E in retention factors k’. They are computed as follows:

_A-T, B-T, , E-T,
T T

’

ki

Notice that it is common to work with the logarithmic form of the k’.

Second, it suggests to transform the three original responses k, k), and k. to three
new responses which represent three independent parts of the information included
in the original responses. Possible responses are the position of the apex, the width
of the peak and its asymmetry. We define f, as the transformation of the original
responses to the p”* new response Y? (Equation 1). Examples will be given below.
Note that, for simplicity, we consider that the transformations of retention times to
retention factors are included in the functions f,’s.

Y? = £,(B,A,E), (1<p<P) (D

Then, Y is the vector of size N.M containing the observed values of Y’ for the



N experiments and M compounds. The responses are ordered as N blocks of M
» () ®» P (p)

components in this vector: Y = OJ1 5 Yins s Vi Yar s o Y-

The inverse transformation function f~!' must exist in order to reconstruct the (pre-
dicted) retention times from transformed responses. This will be useful to compute
retention time-based criteria to assess the quality of chromatograms.

(B,AE) = f1(y!D, .., YD), ()

Such approach will prevent peak inversion in model prediction and clearly high-
light, in the statistical modelling, the part of information available in each response.

3.4  Predictive models building

The ultimate goal of the model building phase is to be able to predict, for given
settings «; of the HPLC tuning parameters, the retention times B, A and E for
each compound c; of the mixture of interest. This will be achieved through the
development of one model for each transformed response Y'?, p = 1, ..., P.

For given experimental conditions x; and a compound c;, a very general theoretical
model for yfj’ ) can be written as:

W= gy(@icii By) + € 3)

where the experimental errors fi(f )

are supposed to be independent, identically dis-
tributed with mean 0 and common variance 0'12,. The independence hypothesis is
taken at three levels : between responses, between experiments (chromatograms)
and between compounds within chromatograms. In design of experiments appli-
cations, the function g, is often defined as a polynomial model and estimated by
classical least squares.

The following steps are recommended to develop these predictive models.

3.4.1 Full model matrix definition

For the (N X F) design matrix X defined in Section 3.1, let’s denote Z as the
(N X R) model matrix containing the higher polynomial model terms that may be
estimated with X. Z will typically contains a constant term, main (qualitative and
quantitative) factor effects, quadratic or higher order terms for quantitative factors
and interactions. Quantitative factors should be centred and scaled in the [—1, 1] in-
terval before being included in Z. Qualitative factors should be coded into dummy
variables.



In order to build predictive models for x; and c;, matrix Z should be expanded
with all the interactions between ¢ and polynomial terms in Z. This full model
matrix is built as S = Z (X) I}, where (X) is the Kronecker product and I, the
M x M identity matrix. S is thus a ((N.M) X (R.M)) matrix containing all the terms
which may potentially explain Y?), the (N.M) vector of observed values for the
p™ response. (R.M) is potentially high and variables selection techniques will be
necessary to achieve good predictive models.

3.4.2 Model estimation and dimension reduction

Multiple linear regression (MLR) or other statistical techniques such as partial least
squares (PLS) are natural model estimation techniques in this framework. Good
introductions can be found in Martens (2001) [12]. If MLR is applied, a variables
selection technique as forward or stepwise will be necessary to select, for each
response YP, the terms that are the most informative and avoid model overfitting.
Let’s note by S» the (N.M) x g” submatrix of S coming out of the variables
selection step for response Y'?) (¢” < R.M). The least squares parameters estimators
are then given by :

/ép - (S(p)’s(p))—ls(p)’y(p)

For MLR, the number of terms kept in the model will typically be chosen simply
by optimizing some criterion on the training set like the AIC or the Adjusted R?
or, more heavily, through cross-validation and optimization of a criterion like the
RMSE.

3.4.3 Model Validation

Models must be validated before being used for prediction. A residual analysis
will be appropriate to check model adequacy, detect outliers or heteroscedasticity.
Appropriate X — Y scatter plots will allow to check visually the independence as-
sumptions. If available, lack of fit tests will allow verifying if the residual variance
is close to the experimental variance.

3.4.4 Prediction

For given factor setting x, the estimated models supply predictions jsz s for each

response p (p = 1, ..., P) and each compound c;. In MLR, one must first build the

vector of model terms sépj) of size g” associated to @, c¢; and response Y. The



predicted responses are given by:

9, = 56, By
— Sél;)( S S(p))—l Sy ® )
= Elyy") | 2o.c;] p=1,..P

One can then use the f~' function to get original predicted responses B, s Ay ; and
E"OJ- from the ;z)(()’]’.)’s (p = 1,...,, P) and thus, predict the complete chromatogram
retention times for the condition x.

3.5 Criteria to assess the quality of a chromatogram

Several criteria can be defined to express quantitatively the quality of a chromato-
gram. Schoenmakers (1986) summarize some definitions of various useful criteria
in [1]. In the framework of the methodology presented in this paper, we favour cri-
teria which assess globally (for the whole chromatogram) a given characteristic of
the chromatogram. Criteria are based on retention times only. Possible characteris-
tics of interest are the resolution, separation, peak width, asymmetry or maximum
elution time.

More formally, let’s B;,A; and E;, j = 1,..., M denote the retention times of the
M peaks of a given chromatogram and B, A, and E(;, j = 1,..., M the ordered
ones (with respect to the retention time of the apex). Each criterion cr, can then be
defined as a specific function ¢, of these retention times:

cry = tz(Bj,Aj,Ej;j =1,...M).

Under these notations, the following interesting criteria may be defined: cry, the
longer elution time which should be minimum; cr,, the minimum separation be-
tween two subsequent peaks which should be maximum; cr;, the maximum peak
width which should be minimum; cr4, the minimum peak resolution which should
be maximum and crs, the maximum peak asymmetry which should be minimum.
A way to express them formally is as follows:

cri=max(Aj), j=1,..M
cro=min(B,y—Eqj), j=1,.,.M-1
crs=max(E;-Bj), j=1,..M
2 (Ags) —Ap)

crq = min( ), j=1,..M—-1
(E+1y = Bjsny) + (E(j) — Bj)
crs = max( ), j=1,..M



Thus, each global criterion is defined as the worst value of a calculated characteris-
tic in a given chromatogram. This ensures that all other computed values, for other
peaks or between other pairs of peaks, are at least better.

The methodology described in this paper is, of course, applicable to other criteria.
For example, Vanbel [4] and Dewé et al. [S] show the use of limited optimization
criteria (e.g. the separation of only 2 peaks of interest) and robustness criteria.

3.6 Definition of a global optimization criterion

Finding optimal chromatographic analytical conditions according to several crite-
ria as defined in Section 3.5 is a multicriteria optimization problem. A common
methodology to approach such question has been introduced by Harrington [13]
and Derringer and Suich [14]. They propose to aggregate the criteria of interest in
one global optimization criterion in two steps.

First, each original criterion cr, (z = 1, ...Z) is transformed into a desirability value
d,(cr,) through a desirability function d,. d, takes its values between 0 and 1 where
1 corresponds to a highly “desirable” value for cr, and O to a non acceptable value.
Values increasing between 0 and 1 express an increase of the “desirability” of the
criterion. Second, all desirability values d;(cry), ...,dz(crz) are aggregated in one
global desirability index D(d,(cry), ...,dz(crz)) to be optimized. This desirability
index is also restricted to the [0,1] interval.

Different types of desirability functions are proposed in the literature. Harrington
introduced the first desirability functions, using exponential functions. Derringer
and Suich based their desirability functions on a power of a linear transformation of
the responses (criteria). Recently, le Bailly de Tilleghem and Govaerts [15,16] pro-
posed functions based on the Normal cumulative distribution function (see Figure
4). These functions present no discontinuities, keeping the strict order of criteria.
More formally, they define d,() as :

Cr; — dy;

dz(crz) = d(

) if cr, has to be maximized,

Z

(5)
cr,—a,. . .
) if cr, has to be minimized,

d(cr) =1-a(

4
where @ is the cumulative distribution function (CDF) of the standard Normal vari-

able defined as:
1 x -
O(x) = —f exp(—)dt. (6)
V271 J-oo 2

10



a, and b, are respectively localisation and dispersion parameters to be fixed by
the analyst according to the context and the criterion. Changes in the parameter a,
imply left or right shifts of the curve. Increasing the parameter b, will make the
curve less stiff.

Maximum Minimum

d(CI'z)

00 02 04 06 08 10
d(CrI'z)

00 02 04 06 08 10

L, 3 UL,

Figure 4. Desirability functions based on the standard Normal distribution function. The
first graph illustrates a criterion to be maximized while the second stands for a criterion to
be minimized.

Several global desirability indices are possible. The most popular is the weighted
geometric mean of all individual desirability values:

V4

Y4
D(er) = [ |der)™ with > w. = 1. (7
z=1

z=1

w, values are fixed by the analyst according to the importance he wants to give
to each chromatogram quality criterion in the global desirability index. Geometric
mean is particularly adapted because one non fulfilled criterion will lead to very
bad global desirability. A good global desirability ensures to have all the (weighted)
criteria as good as needed.

3.7 Search for optimal chromatographic conditions

The experimental design, the predictive models, the quality criteria and the desir-
ability index described in the previous sections provide the necessary elements to
reach the goal of this paper: optimize chromatographic analytical conditions.

The models allow first to predict, for any values of the HPLC tuning parameters
x = (x1, ..., xp) in the experimental domain y, the retention times B;, A; and E; for
the M compounds of the reference mixture of interest. These predictions can then
be transformed to (estimated) chromatographic quality criteria (74, ¢7», ..., ¢Fz) and
the global quality of the chromatogram summarized in an (estimated) desirabil-
ity index D(d,(c?), ..., dz(c?7)). Estimated optimal chromatographic conditions can
then be obtained by searching a value =* such that D is maximized:

z
x* = max D(¢r) = max | |(dZ(CArz))W‘"‘
XTOEY TOEY 1
=

11



Z
= max [ [(@(e(f " (1(@o, € B, ... gp(@o, € Br)))™ 8)
IS =1

Optimal solution can be found using grid search. Other methods exist, such as
gradient descend or simplex algorithm but grid search is the most appropriate tool
in our context because the dimensionality (number of factors to simultaneously
optimize) is generally limited. Furthermore, it avoids falling into local optima and
gives a global map of the evolution of the desirability index over the experimental
domain y.

3.8 Model prediction and error propagation

When optimal conditions are derived from statistical model predictions, it is crucial
to study the impact of the model prediction error on the reliability of the solution
found. This evidence is however rarely highlighted in the multiresponse optimisa-
tion design of experiments literature, but has been discussed recently by Trautmann
and Weihs [17] and le Bailly de Tilleghem and Govaerts [16].

These authors propose different approaches to quantify the incertitude of the de-
sirability functions values and of the desirability index. They introduce also the
notion of equivalence zone around the optimum. For simple cases, exact or approx-
imate analytical solutions exist to implement these concepts but for more complex
situations, Monte Carlo simulations are recommended. The situation of this paper
must be considered as complex due to the introduction of the chromatogram quality
measures in the calculation of the desirability index.

This section proposes a Monte Carlo approach to establish the distributions of the
desirability functions and of the global desirability index. It shows then how these
results allow to derive an equivalence zone for this optimum. Let’s take x, a given
value for the HPLC tuning parameters, and c;, a given compound of interest in
the chromatogram. The prediction models described in Section 3.4.4 provide, for
each response Y and each compound c;, an estimate of the expected response:
ﬁ(;;j =F [yg;.) | @, c;]. Let’s then suppose that an estimate é‘z(ﬂ%i) is available for
the variance of this estimator. In the MLR framework, it is given by (see equation
4 for notations) :

S = 62 s(SP S sl 9)
2
€

N M
1
A2 _ () _ (P2
%0 = (NM =g § E Oy =) (10)
i=1 j=1

where the residual variance estimator &
as

can be estimated from the training data

One can then generate, for each response Y”) and each compound c;, a large set

12



(i* =1, ...Ng,) of simulated “’predicted” responses in x, according to:

(P) _ Alp) »
Yo = Hy,; T €oivj >

where the e(()f?j are random Normal variables with mean 0 and variance 0'2(/2(;;)/). In
the MLR context, this normality assumption is common. '

For each simulation i, (M X P) response values are thus generated. Then, original
responses (B;,A; and E;), quality criteria (cr;) and the global desirability index
D are derived. This allows to establish Monte Carlo distributions for the quality
criteria, and for the global desirability index, which give an idea of the impact of
the models prediction error on the uncertainty of the resulting estimations.

3.9 Optimum equivalence zone

The Monte Carlo distribution of the global desirability index gives also the nec-
essary information to define a zone of the experimental domain which can not be
stated to give significantly worse results than the optimum x* found. The equiva-
lence zone will simply be defined as the set of x’s of the experimental domain y
such that the (estimated) desirability index D(x) is greater than the 5" percentile
of the Monte Carlo distribution of the desirability index at the optimum z*. This
definition is not perfectly correct because there is also an uncertainty on D(x), but
it is easy to implement and is sufficiently informative in the context of this paper.
The size of the equivalent zone will give an idea of the real interest of the optimiza-
tion process. A large zone indicates that the optimization process could not really
differentiate between the quality of different analytical conditions. This may be due
to the fact that there is effectively no real difference between the experimental con-
ditions over the explored domain, or that the uncertainty in the predictive models is
too large to be able to highlight the potential differences.

From a practical point of view, note that, when the number of quantitative factors
of interest is small, the equivalence zone can elegantly be represented on graphs of
contour plots of the predicted desirability index over the experimental domain for
fixed values of the qualitative factors. This will be illustrated in the next section.

3.10 Design space

The last section showed how to propagate the error of the statistical models, in
the optimal factors configuration, to find an equivalence zone. A similar approach
can be used to find, with a known confidence, a design space [8]. Design space is
defined as the established range of process parameters and formulation attributes
that have been demonstrated to provide assurance of quality. A design space is

13



particularly useful. It can be seen as a zone of robustness defined in the experimen-
tal domain because working within is not considered as a change in the analytical
method. At opposite, working out of the design space is considered to be a change
and normally initiates new steps of validation.

The desired minimum quality must be fixed a priori. For instance, it is desirable
to known if there is a zone, in the experimental design, where it is likely to have
a separation of at least m; minutes and a total processing time not exceeding m,
minutes. So, one will look, for each point of the experimental domain, under the
propagated error, how many hits of sufficiently good chromatograms are achieved.
More formally, we have (for criteria to be maximized):

[Vxo e x | P(cr, > A,) >vy%] Yzin1,...,Z (11

Similar formulation can be written for criteria to be minimized. An unified equation
for maximized and minimized criteria can be written in the desirability space:

[Vxo € x | P(d.(cr,) > dy (1)) > y%] ¥ zin 1,...,Z (12)

Figure 5 illustrates this formulation, for a point xy € y, and represents simulated
distribution of a desirability function under the propagated error of the models. A
limit value for the criteria d,(A,) is first chosen. The interest is to observe if y% of
the distribution is higher than d,(1,).

1d,(cr,)

|
d.(1)

Figure 5. Simulated distribution of a criteria (desirability function) under propagated error
of the models. The interest is to look if y% of the distribution of d,(cr;) is higher than a
chosen limit d,(1;).

Thus, a point x belongs to the design space if all the criteria of interest are fulfilled
with a certain level a confidence y%. A wide design space, defined with strong
constraints on the criteria (high d,(4,)), and with a high level of confidence v, is the
most enviable situation in the experimental domain.

14



As for the equivalence zones, if the number of quantitative factors of interest is
small, the design space can be represented on graphs of contour plots.

4 Application

4.1 Experimental

The objective of the separation is the evaluation of the methodology. Consequently,
the compounds under investigation were not selected on the basis of an analytical
problem nor for a practical application.

4.1.1 Chemical and reagents

A mixture of five commercially available compounds (Diflunisal, Granisetron, Ni-
fedipine, Phenytoine, Sulfinpyrazone) was analysed using the design described here
after (section 4.2). These five compounds were obtained from the Eli Lilly pharma-
ceutical company (Indianapolis, USA). Methanol and acetonitrile of HPLC grade
were purchased from Sigma-Aldrich (Steinheim, Germany). Ultra pure water was
obtained from an Academic A10 Milli-Q system (Millipore, Eschborn, Germany).
Acetic acid (>98%) was purchased from Fluka (Steinheim, Germany), ammonium
formate (99%) was purchased from Sigma-Aldrich.

4.1.2 Apparatus

All analysis were performed on a Waters 2695 separation module coupled to a
Waters selector valve 7678 and a Waters 996 Photodiode array detector (Waters,
Eschborn, Germany). The Empower 1.0 software was used to manage chromato-
graphic data. Five analytical columns were used: C18, C8, RP18, Phenyl XBridge
columns (Waters) (100x2.1 mm i.d. ; particle size 3.5 um) and a C18 Cogent Biden-
tate column (100x2.1 mm 1.d. ; particle size 4.0 um) (Microsolv, Villecresnes,
France).

4.1.3 Chromatographic conditions

The elution gradients were performed in 10, 20 or 30 minutes from 5% to 95% of
organic modifier (methanol or acetonitrile) in the adequate buffer at a constant flow
rate of 0.25 ml/minute at 30 °C. The buffer solutions were adjusted at the desired
level of pH:

e pH 2.6: 0.1% concentrated Formic acid (99%) in water,
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e pH 4.0, 5.0 and 7.0: Ammonium Formate 10 mM in water adjusted with concen-
trated formic acid and/or ammonia aqueous solution (35%).

The analytes were monitored photometrically at 240 nm although chromatographic
data were recorded from 210 to 400 nm for all the analytical conditions investi-
gated. The analytes were dissolved in an acetonitrile/water mixture (50:50, v/v).
The injection volume was 2.0 or 5.0 uL.

4.1.4  Software

We used the statistical language R 2.4.0 for Windows to implement the methodol-
ogy presented in the last section.

4.2  Design of experiments

We applied a full factorial design on 4 factors : the pH of the mobile phase, the
time used for the gradient, the solvent used in the composition of the buffer, and the
analytical column. It is clear these factors highly affect the position of peaks in the
chromatograms. We used gradient mode because the behaviour of peaks elutions
is not as known as in isocratic conditions. The goal was to stress the methodology
using less repeatable experiments with gradient mode with less known behaviour
of peaks elutions.

Moreover, the analytes have been chosen to cover a large range of pK, and log P.
Gradient mode gives more chance to obtain all the analytes eluted on the chro-
matogram in a constrained time.

Temperature, column diameter, injection volume or other chromatographic param-
eters were not include in the design example. Their values were then fixed as ex-
plained in section 4.1.

Factors and levels of factors were chosen to validate the methodology. The Figure
6 shows the values of the quantitative factors (pH and gradient time) over the ex-
perimental domain. 3 levels of pH and gradient were investigated in a full factorial
design. Intermediate points were added to validate the methodology.

5 analytical columns and 2 solvents have been selected as qualitative factors.

e column : Bidentate NA, Xbridge C18*, Xbridge C8, Xbridge Phenyl* and
Xbridge RP18,
e solvent : CH3;CN and MeOH.

Analytical columns were chosen for their different chemical interactions with so-
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Figure 6. Full factorial design applied on the quantitative factors (plain lines). Intermediate
points (pH=4, 6) have been added to the design (dashed lines) to validate the methodology.

lutes and also their robustness against large range of pH. The number of columns
was a good compromise between domain investigation and overloading of experi-
mental design.

Full factorial design on the 4 used factors gives 3 levels of pH * 3 gradients *
5 columns * 2 solvents = 90 experiments that have been first realized. This is quite
a lot of experiments, but it was useful to set up the models properly. The interme-
diate validation points were realized on both CH;CN and MeOH solvent, and on 2
columns: Xbridge C18 and Xbridge Phenyl. This gives 2x2+2*2 = 16 experiments
to generate a test set. Validation and test data give 90 + 16 = 106 experiments. 5
compounds were analysed, giving N * M = 106 = 5 = 530 observations. Of course,
final use of the methodology will lead to less experiments.

Fractional factorial design or D-optimal design are recommended when the num-
ber of factors to simultaneously optimize increases. Another improvement is to
use a column selection before realizing experiments. A good practice is to choose
columns which possess very different physico-chemical properties. For instance,
reducing this number of columns to 2 would lead to 36 experiments instead of 90
in full factorial design. Using D-optimal design, number of experiments can be de-
creased to 24 or even 12. This is quite reasonable to develop a method with 4 factors
to be simultaneously optimized.

4.3 Responses selection

We first modelled the retention factors k. We assumed that the peaks were sym-
metric, which was suitable for this example. Thus, we modelled the apex and the
width of the peaks. The supposed symmetry allows to define easily f~! and thus to
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reconstruct original retention times (see later). Formally,
YO = log(ky), Y? = log(kj, — ki) (13)

Other responses definitions can also be used. We chose these responses because
they possess the best modelling properties.

4.4 Models

We used polynomial models with a forward variables selection of included terms
maximizing the Adjusted R* for model Y and Y®. This method gave the best
predictive results.

Models possess a high number of parameters such that it is not possible to describe
them completely. The Table 4.4 gives a brief summary of the models. The most
impactful model, for the apex, seems good while the fit for the width is very limited.
This can be seen as problematic, but the error on the widths estimation has less
importance on the final estimation of the retention times (£ and B). Moreover, this
error is taken into account in the final steps of the methodology. Validation of the
models are bypassed in this report.

YWD = log(k)) | YP = log(k}, - k},)
adjusted R? 0.96 0.51

# of parameters 180 68

Table 1. Summary of the fits (MLR) for the selected responses.

4.5 Prediction

So far, The models have been set up and can be used to predict new values of
responses on the complete experimental domain y. Retention times vectors can be
reconstructed as follows :
. o) o2
/AC':eY(]); Vo= — ; Vo= 4
A B A 2 E A 2 (14)
A = (Ty.ky) + Ty; idem for B and E

This set of equations is the function f~! presented in equation 2. Criteria can be
computed from the retention times A, B and E. This allows to compute the desir-
ability functions and global desirability index on each points of y.
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4.6  Optimum finding

Then, a grid search was applied. The only parameter to tune is the value of the step
of the quantitative variables. This defines a grid more or less dense. Computational
explosion can arise if the step is too small. To avoid this, the search can be done
in several step, increasing the precision around the optima found. Our selected step
is 0.1. Values of quantitative factors are still normalized in the interval [—1, 1] in
this process, giving 21 points to be computed for each quantitative factors. The
full factorial combination of factors then led to 21 levels of pH * 21 gradients *
S columns * 2 solvents = 4410 points to be predicted.

For each point, complete chromatogram, criteria, desirability values of criteria and
global desirability index were easily computed, following the equation 8, page 12.
Different global desirability indexes can be found using different weights w, (see
section 3.6).

The desired objective in our example was the best separation of all peaks in the
minimum processing time. Only the criteria of minimal separation cr, and of maxi-
mum retention time cr; were then used. In this case, other criteria had little interest
or were non informative (e.g. asymmetry).

We first considered default weights for both criteria (w; = w, = 1/2). However,
Figure 7 (left) shows a non achieved separation between the fourth and the fifth
peaks. To manage this problem, we elaborated a second solution, that tends to give
less weight to the maximum retention time (w; = 1/6, w, = 5/6) in order to achieve
a better separation.

The optimal points * for these two solutions are given in Table 4.6 (see equation
8, page 12).

(Column, pH, Solvent, Gradient time)

Solution 1 | (Xbridge Phenyl, 3.92, CH3CN, 12)

Solution 2 (Xbridge RP18,7, CH3CN, 18)

Table 2. Values of optimal points x*. These points are the ones in y that maximise the
global desirability.

Figures 7 and 8 show, for the two solutions envisaged, the optimal predicted chro-
matogram and the corresponding contour plot of the global desirability index (qual-
itative factors are fixed to optimum). The second chromatogram has a better sep-
aration but takes more time to be processed. It is clearly shown that the weights
allow to find an acceptable solution (without any more experiment). This give a lot
of flexibility to this approach.
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However, the used gradient (from 5% to 95% of organic modifier in the buffer)
leads to suboptimal solutions. Indeed, the peaks elutes in 5 minutes from 10 to 15
minutes. The optimality of a solution is only valid within the experimental domain
and it is still the responsability of the analyst to define the most interesting domain.
Other gradient slopes or isocratic conditions would have been used and maybe,
would have given better performance.

Xbridge Phenyl 3.92 CH3CN 12 contour plot of desirability for optimal column and solver
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Figure 7. Solution 1. Left: Predicted optimized chromatogram with equal weights for crite-
ria. Right: Corresponding contour plot of the global desirability index across the quantita-
tive normalized domain (qualitative factors fixed to optimum). The red (dark) point shows
optimum.

Xbridge RP18 7 CH3CN 18 contour plot of desirability for optimal column and solver
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Figure 8. Solution 2. Left: Predicted optimized chromatogram with higher weight for sepa-
ration. Right: Corresponding contour plot of the global desirability index across the quanti-
tative normalized domain (qualitative factors fixed to optimum). The red (dark) point shows
optimum.
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4.7  Error propagation

It is important to be able to give confidence in these optimal solutions. Uncertainty
of the expected estimated responses for the predicted optimal points can be prop-
agated. One can look at the values of the desirability of criteria, under propagated
error, with histograms of their distribution. The main interest is to look if the error
of the models allows to have confidence in the values of desirability of criteria and
also the global desirability index.
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Figure 9. Distributions of the two estimated criteria (desirability functions of maximum
retention times and minimal separation) and global desirability for the two solutions envis-
aged.

Figure 9 shows the error propagated on the considered criteria and on the global
desirability, for the two solutions envisaged. In the first solution (left column), we
wanted to maximise separation and to minimize total retention time of the chro-
matogram. In the second solution, we gave less relative weight to the retention time
criterion. This leads to a worse distribution of the error propagated for this criterion
(first row of the array), while the distribution for the separation possess a certain
asymmetry underlying the better achievement of this criterion (second row). The
same observation can be done on the global desirability (last row). Notice that the
criteria are shown non weighted (rows 1 and 2 of the graph), but global desirability
takes the weights into account (last row).
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4.8 Equivalence zones

Figure 10 shows the equivalence zones at 95% on the contour plot of the figure
7 and 8. The first graph (left) shows clearly differentiated values. This leads to
the conclusion that this optimal point has a limited equivalence zone. The optimal
equivalence zone is better (in term of desirability) than elsewhere in the design of

experiment. The second graph can not be used to give a similar conclusion.

05

Figure 10. Contour plot showing the set of solutions giving an estimated desirability greater
than the 5 percentile of the simulated global desirability index under error of the models
(at optimal solution). Left: solution 1. Very few conditions give desirability likely close to
the optimal solution. Right: solution 2. Over the domain, most conditions are likely to give
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desirability index close to the optimal one.

4.9 Design space

The final objective was to observe the existence, or non existence, of a design space
in the experimental domain. A design space is considered as a zone of robustness
in the experimental domain because it allows to tolerate variability of materials and

slight changes in the process.

Criteria Value

Separation 0.0 min. (minimum)

Total retention time | 20s min. (maximum)

Probability y 60%

Table 3. Design space: limit values for the criteria and confidence in design space.

The Table 3 shows the selected values for criteria to be fulfilled. According to these
criteria, a small design space is found (see section 3.10 for mathematical details),
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as shown in the Figure 11. It is certain that the used level of confidence and the
chosen limits for the criteria are rather weak. The solution 2 is included in this
design space.

design space

gracient
0.0
|

Figure 11. Contour plot of the design space (dark area) for the values presented in Table 3

4.10 Validation

The second solution has been validated. Figure 12 compares the chromatogram
obtained with the proposed optimal conditions (right) with the one predicted using
the solution 2 (left). The positions of the apexes of the peaks does not suffer from
excessive imprecision but the width of the peaks are clearly not well predicted. This
was foreseeable due to the bad fitting of the model for the width (Y®).

Xbridge RP18 7 CH3CN 18 Xbridge RP18 7 CH3CN 18
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Figure 12. Validation of optimal solution 2. Left: predicted chromatogram. Right: Chro-
matogram obtained when using optimized HPLC parameters (Column Xbridge RP18, pH
7, Solvent CH3CN, and gradient time 18 minutes).
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5 Conclusions

A very flexible methodology for modelling chromatography has been proposed and
shown in order to optimize analytical conditions. This is an important step to permit
the automation of methods development. The discretization of retention times is so
far the main manual part of the job but evidences show that this process can also be
automated. Given the flexibility of the proposed methodology, it is now possible to
envisage modelling for automation on real process.

The use of the Normal CDF is a very convenient and automated way to combine
various criteria into a global desirability index. This also allows flexibility in re-
gards of the chosen criteria. Furthermore, they can be weighted according to the
need of the analysis.

Finally, assessing the way the uncertainty propagates into global desirability in-
dex is simple and effective to verify the confidence in optimal condition(s). Design
space can also be computed with confidence, using a similar methodology of mod-
els error propagation, on each point of the experimental domain. Robustness can
finally be assessed or validated analytically with new experiments in the design
space around optimal solution(s).
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