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1 Introduction

A frequently used approach for the statistical analysis of ordinal data consists in modelling the data as

a discretization of an underlying latent variable. The idea is, for instance, at the root of logit models

for ordinal data (see e.g. Agresti (1984, chapter 6). When dealing with a (column) vector of I ordinal

variables X = (X1, . . . , XI)> with Xi ∈ {1, . . . , ri}, it is accordingly natural to associate to each

coordinate Xi a latent variable ξi and a vector of thresholds −∞ = α
(i)
0 < α

(i)
1 < . . . < α

(i)
ri = ∞ with

the interpretation:

Xi ≤ k ⇔ ξi ≤ α
(i)
k . (1)

This approach has suggested measuring the association among ordinal variables by the association

among the corresponding latent variables. Thus, early in the twentieth century (Pearson (1900), Pearson

and Pearson (1922), see also the bibliography in Goodman (1981)), a polychoric correlation, ρP , has

been proposed, as the Pearson’s correlation (corr) among the corresponding latent variables:

ρP (Xi, Xj) = corr(ξi, ξj). (2)

In the eighties, the practitioners of covariance structure models using packages such as LISREL or

EQS widened the scope of these models, originally conceived for continuous variables, by using, for

ordinal variables, a matrix of polychoric correlations the same way they used Pearson’s correlations for

continuous variables (see e.g. Muthén (1983); Muthén (1984), Jöreskog, Sörbom, du Toit and du Toit

(2002) among others).

Recently, the association among continuous random variables has been approached through the de-

composition of the joint distribution of a random vector into the set of marginal distributions of each

coordinate and a copula, i.e. a multivariate distribution with margins uniform on [0, 1]. The idea is

that the copula concentrates the properties of association within the random vector independently of the

specification of each coordinate (see e.g. Nelsen (1999)).

One object of this paper is to provide an analysis of several identification problems raised by the

model leading to the polychoric correlations. We shall show that the use of a copula approach enhances

the understanding of the identifying restrictions on the parameters, in a parametric approach, and of the

form of the distribution of the latent variables, in a nonparametric approach. We shall next pay particular

attention to the role of the normality assumption on the latent variables and the meaning of testing the

normality hypothesis. Finally we propose a specification test using the Bayesian encompassing principle

in the context of partial observability.

The Bayesian specification test for models involving partial observability has been exposed in Al-

meida and Mouchart (2005, 2007); for the case of total observability, see Florens, Richard and Rolin

(2003) and for the general setup Florens, Mouchart and Rolin (1990) and Florens and Mouchart (1993).

The main idea is to compare the parametric specification against a nonparametric alternative by using the

inference over the nonparametric parameter in the alternative hypotheses both directly, in the alternative
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model, and indirectly, in an extension of the parametric model through the so called Bayesian Pseudo-

True Value; the parametric model is accordingly a reduction by sufficiency of this extended model. If

these two inferences are “near”, the simpler (parametric) model is preferred.

Because, in nonparametric models, we are dealing with undominated families of distributions (and

therefore with undefined densities) we opt for a σ-algebraic notation, details of which are given in

Appendix A.

This paper is organised as follows. Next section provides a general view of the model and an analysis

of a first identification problem under arbitrary distribution specification. Section 3 focus attention on

identification problems raised by a normality assumption. Section 4 proposes a copula approach of the

discretization model and Appendix C provides a short overview on copulas. Section 5 develops a test of

the normality assumption based on a Bayesian version of the encompassing principle, reminded briefly

in Appendix D. Section 6 analyses, by means of a simulation experiment, some properties of the test just

developed and Section 7 proposes an application of the test for a case of meta-analysis of clinical trial

data. The paper is concluded by some remarks. Appendix B gives a formal proof of a Theorem stated

in Section 3.

2 A General Specification

2.1 Discretization of the latent variable

Let X be a vector of I categorical variables Xi each with range 1, . . . , ri:

X = (X1, . . . , XI)> ∈
∏

1≤i≤I
{1, . . . , ri} ≡ RX , d = card RX =

∏
1≤i≤I

ri,

whereRX ⊂ INI denotes the range ofX . A disjunctive coding is constructed by defining: Zk = 1I{X=k}

for each k = (k1, . . . , kI) ∈ RX ; more specifically:

Z = (Zk : k ∈ RX) ∈

(zk : k ∈ RX) : zk ∈ {0, 1},
∑
k∈RX

zk = 1

 ≡ RZ , (3)

with RZ ⊂ {0, 1}d. This coding is subjected to a generalised Bernoulli distribution:

Z | τ ∼ GBe(d)(τ), or equivalently: P ( Z = z | τ ) =
∏
k∈RX

τ
zk

k (4)

with τ = (τk : k ∈ RX) ∈ T ⊂ Sd−1 and τk = E[ Zk | τ ] ∈ [0, 1], where Sd−1 is the (d − 1)-
dimensional Simplex, i.e. Sd−1 = {u ∈ IRd+ :

∑
ui = 1}.
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Under an i.i.d. sampling of (4), a minimum sufficient statistic is the sum of the data:

N =
∑

1≤i≤n
Z(i) with N = (Nk; k ∈ RX), Nk ∈ {0, . . . , n},

∑
k∈RX

Nk = n. (5)

The data N of I ordinal variables may be viewed as an I-dimensional contingency table distributed as a

multinomial distribution:

N | τ ∼ MN(d)(n, τ). (6)

The labeling of possible values of Xi is arbitrary. The only relevant feature is the number ri, of different

labels.

The ordered property of the ordinal variablesXi is recovered by positing a continuous latent random

variable ξi and an ordered vector of thresholds α(i) = (α(i)
1 , . . . , α

(i)
ri−1) (with the convention α(i)

0 ≡ −∞
and α(i)

ri ≡ ∞) with the interpretation given in (1). Therefore the statistical model, bearing on the

manifest vector X , is characterized by the array

α = {α(i) : i = 1, . . . , I} (7)

and the joint distribution of the latent vector ξ, say ψ. The array α operates a decomposition of IRI into∏I
i=1 ri = d cubes:

ck = ck1,...,kI
=

I∏
i=1

(α(i)
ki−1, α

(i)
ki

] k ∈ RX . (8)

Note that, ck is a function of the parameter α. The statistical model may accordingly be described as

follows:

P ( X = k | ω ) = ψ(ck), with ω = (ψ, α) ∈ Ω, (9)

where ψ is the multivariate probability distribution of the ideally measured variables ξ and α gathers the

thresholds as given in (7).

2.2 A first identification problem

The correspondence between the parametrization of the saturated model and that of (9) is given by

ψ(ck) = ωXk, (10)

with (ωXk : k ∈ RX) = ωX ∈ ΩX = Sd−1. The parametrization ωX = (ωXk : k ∈ RX) is clearly

identified because the ωXk’s represent cell probabilities of an I-dimensional contingency table. The

correspondence (10) reveals a first identification problem.

Let indeed G be the group of continuous strictly increasing functions g : IR → IR, G(I) be the

group of coordinate-wise transformations defined as: g = (g1, . . . , gI) with gi ∈ G and define the
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corresponding transformation of ω:

αg = {gk(α
(i)
k ) : k = 1, . . . ri − 1, i = 1, . . . , I},

ψg = ψ ◦ g−1,
(11)

then,

P (• | ψ, α) = P (• | ψg, αg). (12)

From (12), we obtain the following theorem

Theorem 2.1. In the threshold model (1), let ψi, i = 1, . . . , I be the marginal distributions of ψ. Then

the ψi’s are not identified

As a consequence, a reasonable measure of association for data generated by the discretization model

(1) and (9) should not depend on the marginal distributions of the latent variables ξi. A natural measure

of association might be the Spearman’s rho, which is the Pearson correlation among the corresponding

latent variables transformed by their own distribution function:

ρS(Xi, Xj) = corr(ψi(ξi), ψj(ξj)). (13)

By the probability integral transform theorem, ψj(ξj) follows a uniform distribution on [0, 1]. Further-

more, in case of a finite sample on observable variables U and V , Corr (FU (U), FV (V )) may be esti-

mated, non parametrically, as the rank correlation obtained by plugging in (13) the empirical marginal

distributions, for details see e.g. Kruskal (1958). As the marginal distribution functions of the latent

variables, ψk, are not identified and can therefore not be meaningfully estimated, an operational alter-

native to the unestimable corr(ψi(ξi), ψj(ξj)) could be corr(ξi, ξj). This is precisely the polychoric

correlation.

Definition 1. The matrix of polychoric correlations for the I-dimensional vector X of ordinal variables

is defined as the I × I correlation matrix of the corresponding continuous latent variables {ξi : i =
1, . . . , I}.

R = (ρij) where ρij = corr(ξi, ξj). (14)

This concept is clearly not invariant under strictly increasing (non linear) transformations of ξi, in

spite of the identification problem raised in (12) and Theorem 2.1. In next section we consider the iden-

tification of R under a normality assumption for the joint distribution of the latent vector (ξ1, . . . , ξI).

3 Identifiability under Normality

The use of polychoric correlations is often grounded on the hypothesis ξ ∼ N(µ,Σ), or, in the notation

developed in the above section, ψ = N(µ,Σ). In order to preserve normality, we consider the subset of

affine transformations included in G(I); these are the transformations such as:
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x ∈ IRI 7→ g(x) = Bx+ c, (15)

with B = Diag{b1, . . . , bI}, bi > 0 and c ∈ IRI . This subgroup is denoted by G(LI) where L refers to

the “Linear” feature of these transformations and I is the dimension of the space.

Following the same development as above, the array α is transformed into αB,c = {bia(i)
k + ci :

k = 1, . . . ri − 1, i = 1, . . . , I}. Then (N(µ,Σ), α) and (N(Bµ + c,B>ΣB), αB,c), are observa-

tionally equivalent. This identification problem is typically solved by fixing bi = [V ar(ξi)]−
1
2 and

ci = −biE(ξi) for i = 1, . . . , I and therefore fixing the marginals. Under ξi ∼ N(0, 1), the parameter

in (9) is reduced to:

γ = (R,α) ∈ Γ, (16)

where R is a correlation matrix, α is an array giving the thresholds and Γ denotes the parameter space.

The model (9) now becomes:

P ( X = k | γ ) = ΦR(ck) = γXk, (17)

with (γXk = k ∈ RX) = γX ∈ ΓX ⊂ ΩX , and where ΦR is the multivariate normal distribution with

zero mean, unit variance and R correlation matrix.

The dimension of Γ is equal to:

Dim Γ =
I(I − 1)

2
+
∑

1≤i≤I
(ri − 1), (18)

where Dim C stands for the dimension of the smallest affine space containing C. If we assume that

min{I, r1, . . . , rI} ≥ 2, we have that:

Dim Γ =
I(I − 1)

2
+
∑

1≤i≤I
(ri − 1) ≤

 ∏
1≤i≤I

ri

− 1 = Dim ΩX (19)

with the equality if and only if I = r1 = r2 = 2.

As ωX , the parameter of the saturated model, is obviously identified and a smooth function of γ,

condition (19) says that a necessary condition of identification of γ is always satisfied. A complete

characterization of the identifiability of this model is given by the following result.

Theorem 3.1. Under the normality hypothesis, if min{I, r1, . . . , rI} ≥ 2, then γ = (R,α) in (16) is

identified, or equivalently, the mapping γ 7→ P (• | γ), defined in (17), is one-to-one, provided that the

polychoric correlations matrix R is not singular. In such a case there is a bijection between Γ and ΓX .

The proof is given in the Appendix B. We also have the following corollary:
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Corollary 3.2. Under the hypothesis of Theorem 3.1, γ is just identified if I = r1 = r2 = 2; otherwise,

the model is overidentified. i. e. The multinomial model (17) is not saturated

Therefore, once min{I, r1, . . . , rI} > 2, the normality assumption implies

restrictions on ωX , that may be used for testing purposes. Two remarks are in order. Firstly a global

test of normality becomes rapidly unmanageable when d is increasing. The procedures programmed in

several packages, such as LISREL or EQS, only test for bivariate normalities, even though alternative

procedures are also available, as for instance in Muthén and Hofacker (1988). Secondly, the null hy-

pothesis actually tested by these procedures contains not only the normal distributions but also the other

distributions implying the same restrictions on ωX . When interpreting the results of such a test, the

difficulty is to make these restrictions explicit: equation (19) only gives information on the dimension of

the parameter spaces ΩX and Γ but does not provide an explicit bijection between Γ and a subset of ΩX

representing the null hypothesis. This leaves open the possibility that another parametric specification

could imply the same restrictions on ΩX as the normal specification.

4 A copula approach to the discretization model

A brief summary on copulas is given in Appendix C. In a nonparametric specification, and using Sklar’s

Theorem, the discretization model (1) and (9) can be parametrized, instead of (9), as follows:

ω = ({ψi : i = 1, . . . , I}, C, α), (20)

where C represents the unique copula such that:

ψ(x1, . . . , xI) = C(ψ1(x1), . . . , ψI(xI)). (21)

As the marginal distributions {ψi : i = 1, . . . , I} are not identified, the thresholds α are more

suitably defined on the support of the marginal distributions of the copula C rather than on the support

of {ψi : i = 1, . . . , I}. More specifically, we reparametrize (20) into:

π
(i)
k = ψi(α

(i)
k ) ∈ [0, 1], α

(i)
k = ψi

−1(π(i)
k ). (22)

Therefore (1) becomes

∀ k ∈ RX {X ≤ k} = {ψi(ξi) ≤ π
(i)
ki
, i = 1, . . . , I}, (23)

and the statistical model (9) is rewritten:

P ( X ≤ k | ω) = C(π(i)
ki

: 1 ≤ i ≤ I) = ωXk, k ∈ RX . (24)

Consequently, the non-identifiability of the margin ψi (i.e. X ⊥⊥ (ψi : i = 1, . . . , I) | C, π in Bayesian
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terms) leads to the sufficient reparametrization of (20) as:

ωC = (C, π) (25)

where the subscript C stands for “Copula” and (7) is re-parametrized, by means of (22), into:

π = {π(i)
k : k = 1, . . . , ri − 1, i = 1, . . . , I}. (26)

Thus, for all i, π(i)
0 = 0 and π(i)

ri = 1.

The thresholds (π(i)
k : k = 1, . . . , ri) may be also viewed as the distribution function of the manifest

variable, namely the probability that the ordinal variable takes a value equal or inferior to k, and from

(22), are such that the α(i)
k ’s correspond to the π(i)

k -quantiles of the unidentified marginal distribution

ψi. Furthermore, the threshold parameters π(i)
k are defined independently of the copulas. Therefore the

π
(i)
k ’s may be unbiasedly and consistently estimated by the sample proportions. In contrast, the α(i)

k ’s

may be consistently estimated, but not unbiasedly (except in very particular cases), only relatively to an

arbitrary specification of ψi.

When a family of copulas is finitely parameterized, the necessary condition of identification (19)

becomes:

Dim ΘC ≤
I∏
i=1

ri − 1−
I∑
i=1

(ri − 1), (27)

where ΘC is the parameter space of a given family C of I-dimensional copulas defining the model. In

the case of a Gaussian copula relative to a multivariate normal distribution with correlation matrix R,

say CGR , the model (1)-(9) becomes:

P ( X ≤ k | ωNCO) = CGR (π(i)
ki

: 1 ≤ i ≤ I), with ωNCO = (R, π), (28)

where ωNCO is the copula parametrization of the model under normality. As the parametrization ωNCO
is clearly in bijection with γ, the conditions of application of Theorem 3.1 remain the same.

5 Testing Normality in the Bivariate Case

The meaning of the correlation matrix R is based on a normality assumption for the distribution of the

latent vector ξ. This hypothesis is testable as long as it implies restrictions on the identified parameters

of the saturated statistical model. Even so, a specification test of a normal hypothesis against a non para-

metric alternative hypothesis is a difficult task because of the non observability of the latent variables.

This section illustrates the computations involved by a testing procedure based on an encompassing

principle in a Bayesian framework. Some basics of the general procedure for Bayesian encompassing

can be found in the Appendix D.
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5.1 Bayesian Specifications of the discretization model

Sampling Models After Section 2, let us consider the case I = 2, namely two ordinal variables

(X1, X2)> ∈ RX = {1, . . . , r1} × {1, . . . , r2} considered as discretization of the latent variables

(ξ1, ξ2)> ∈ IR2; again denote d = card(RX) = r1 · r2.

At the level of these latent variables, the sampling parametric null and nonparametric alternative

models are specified by:

E0 : ξ(`) | θ ∼ ind. N(2)

[(
0
0

)
,

(
1 θ

θ 1

)]
, ` = 1, . . . , n (29)

E1 : ξ(`) | ψ ∼ ind. ψ, ` = 1, . . . , n (30)

where θ ∈ [−1, 1] is a Euclidean parameter whereas ψ, a probability measure on IR2, is a functional

parameter.

Suppose now that only an n-sample of a discretization of these latent variables is observed, namely:

X(`)
.= fα(ξ(`)) = Disc(ξ(`), α), ` = 1, . . . , n (31)

where “Disc” denotes the discretization function according the array of thresholds α as defined in (1).

As before, γ = (θ, α) and ω = (ψ, α).
We again consider the disjunctive coding:

Z(`) = (Zk,` : k ∈ RX), Zk,` = 1I{X(`)=k} ∈ {0, 1},
∑
k∈RX

Zk,` = 1. (32)

The statistical models can be written as follows:

E0 : Z(`) | θ, α ∼ ind. GBe(d)(γX) (33)

E1 : Z(`) | ψ, α ∼ ind. GBe(d)(ωX) (34)

where the identified parameters γX and ωX provide the cell probabilities and are defined by:

γX = (γXk : k ∈ RX), γXk = P 0(Zk,` = 1 | θ, α) = P 0(X(`) = k | θ, α)

ωX = (ωXk : k ∈ RX), ωXk = P 1(Zk,` = 1 | ψ, α) = P 1(X(`) = k | ψ, α).

Observe also that:

γX = Φθ ◦ f−1
α ∈ ΓX ⊂ Sd−1 (35)

ωX = ψ ◦ f−1
α ∈ ΩX = Sd−1 (36)

where Φθ denotes the normal bivariate distribution with normal standard marginals and correlation θ.
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Again define the sufficient statistic:

N = (Nk : k ∈ RX), Nk =
∑

1≤`≤n
Zk,`, (37)

i.e. a two-entry contingency table with ordered classes, with sampling distributions:

E0 : N | θ, α ∼ MN(d)(n, γX) (38)

E1 : N | ψ, α ∼ MN(d)(n, ωX). (39)

This is therefore a case where the two statistical models are characterised by a same sampling pro-

cess, namely a multinomial one. The specification test, at the level of manifest variables, becomes

accordingly a test on the prior specification for the models reduced to the manifest variables. In other

words, the sampling distributions of the structural models generating (ξ | θ) and (ξ | ψ), along with

their respective prior specifications, are hopefully associated with different prior specifications on the

parametrization identified by the manifest variables. In the present case both γX and ωX take values in

the (d − 1)-dimensional Simplex. In a sampling theory approach, the testability of the two hypothesis

depends on whether the null model implies testable restriction, i.e. whether the parameter space of γX
is strictly included in the parameter space of ωX .

Prior specifications It should be mentioned that on the one side the two structural models E0 and

E1 involve the structural parameters (θ, α) and (ψ, α) respectively and that these parameters, haying a

contextually specific meaning, are likely to carry prior information. On the other side, the two statis-

tical models identify the statistical parameters γX and ωX ; as these statistical parameters are, more or

less, complex functions of structural parameters, the prior information, if substantial, could be deduced

from the prior distributions on the structural parameters, whereas if poor, could be specified, with some

approximations, directly of the statistical parameters.

In this Bayesian test, we specify, in the null model, a prior distribution on the finite dimensional

structural parameters (θ, α) from which we deduce a distribution on γX . In the alternative model, a

prior distribution is specified directly on the statistical parameter ωX .

(i) In the null model. The separation between the partial observability process and the structural

model suggests to also assume that:

θ ⊥⊥ π;Q0. (40)

The prior distribution for the correlation in the null model is specified as:

θ + 1
2

∼ Beta(a, b). (41)
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For α, we first use the reparametrization (22):

π
(i,0)
k = Φ(α(i)

k ), k = 1, . . . , ri, i = 1, 2 (42)

where the second superindex, 0, stands for the null model and Φ is the cdf of the normal standard

distribution. The thresholds on [0, 1] are conveniently reparametrized into the Simplex as follows:

δ
(i,0)
k = π

(i,0)
k − π

(i,0)
k−1 , δ

(i,0) = (δ(i,0)k : k = 1, . . . , ri) ∈ Sri−1, i = 1, 2, (43)

and the prior distribution is specified as:

δ(1,0) ⊥⊥ δ(2,0), or, equivalently: π(1,0) ⊥⊥ π(2,0) (44)

δ(i,0) ∼ Diri(n
(i,0)
0 F

(i,0)
0 ), i = 1, 2 (45)

with

F
(i,0)
0 = (F0

(i,0)
k : k = 1, . . . , ri), F0

(i,0)
k = P 0(Xi = k), i = 1, 2. (46)

The statistical null model is:

N | θ, π ∼ MNd(n, γX) where γX = h(θ, π)

γX ∼ (M0
θ ⊗M0

π) ◦ h−1,
(47)

where the function h(·, ·) evaluate the cell probabilities of the contingency tables.

(ii) In the alternative model, the prior distribution on the functional parameter is specified as follows:

ωX ∼ Did(n
(1)
0 F

(1)
0 ) (48)

ψ, α | ωX ∼ An arbitrary distribution (49)

where “Did” stands for the d-dimensional Dirichlet distribution, n(1)
0 > 0 and F (1)

0 a matrix with the

predictive probabilities of each cell in the alternative model, namely:

F
(1)
0 = (F0

(1)
k : k ∈ RX), F0

(1)
k = P 1(X = k). (50)

(iii) Compatibility. Two prior specifications, (47) and (48), share in common a same empirical

meaning of the thresholds on the margins of the copula. These prior specification should consider

explicitly whether some compatibility should be required. More precisely, let us denote similarly to

(42):

π
(i,1)
k = ψi(α

(i)
k ), k = 1, . . . , ri, i = 1, 2 (51)

as before, the second superindex, 1, stands for the alternative model and ψi is the cdf of the unidentified
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marginal distribution of the latent variable ξi. With the same reparametrization as in the null model:

δ
(i,1)
k = π

(i,1)
k − π

(i,1)
k−1 , δ

(i,1) = (δ(i,1)k = k = 1, . . . , ri) ∈ Sri−1, i = 1, 2, (52)

has a meaning given by P 1(Xi = k | ω) = δ
(i,1)
k and represents the marginal distributions corresponding

to the joint distribution ωX , namely:

δ
(i,1)
ki

=
rī∑

kī=1

ωXk1k2 , i = 1, 2 (53)

with ī = 1 if i = 2 and ī = 2 if i = 1. Using properties of the finite dimensional Dirichlet distribution,

and denoting the margins of the matrix F (1)
0 in (50) by:

F0
(i,1)
ki

=
rī∑

kī=1

F0
(1)
k1k2

, F
(i,1)
0 = (F0

(i,1)
ki

: ki = 1, . . . , ri), (54)

we obtain, from (48),

δ(i,1) ∼ Didi
(n(1)

0 F
(i,1)
0 ), i = 1, 2. (55)

Because (π(i,0) : i = 1, 2) and (π(i,1) : i = 1, 2) represent both the marginal distribution functions of

the manifest variables Xi, we make two remarks:

1. The condition F (i,0)
0 = F

(i,1)
0 , i = 1, 2 means the same marginal predictive distributions in both

model;

F
(i,·)
0 = P 0(Xi = k ) = P 1(Xi = k ), k = 1, . . . , ri, i = 1, 2. (56)

2. If additionally n(0,0)
0 = n

(1,0)
0 = n

(1)
0 , the same prior distribution on δ(i,0) and on δ(i,1) are speci-

fied. Thus, it is plausible to specify a same prior distribution over π in both models, and suppress

accordingly the superindex relative to the model. Note however that the structural meaning of the

thresholds α is relative to the unidentified marginal distributions of the latent variables.

Remark. In the null model, α and π are bijectively related because the marginal distributions of ξ1 and

ξ2 are fixed, by identification constraints. In the alternative model only (α, ψ) and (π, ψ) are bijectively

related; in other words ωX is a function of (α, ψ) whereas (π, ψ) and π is a function of ωX .

5.2 Bayesian encompassing specification test

The partial observability process is defined by a function known up to a Euclidean parameter α, or

equivalently π. The extension of the null model in order to include the functional parameter of the

alternative model is obtained by a conditional probability Mψ|θ of the extended probability Q0,∗ of
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(ψ, θ, ξ,X) endowed with the following extended Bayesian Pseudo-True Value condition, namely:

ψ ⊥⊥ ξ, π | θ;Q0,∗; (57)

more motivation is given in Almeida and Mouchart (2007).

Remember that ωX has been defined as the minimal sufficient parameter in the alternative statistical

model; thus: ψ, α ⊥⊥ X | ωX ;Q1. Furthermore, in the extended model, we also have the sufficiency

of ωX , namely ψ, α ⊥⊥ X | ωX ;Q0,∗ if we assume the condition ψ ⊥⊥ θ | ωX ;Q0,∗ as in Theorem 3 in

Almeida and Mouchart (2007). This suggests the plausibility of the condition:

M0,∗
ψ|ωX

= M1
ψ|ωX

, (58)

and permits to make the comparison based only the identified parameters through:

d(N) = d∗(M0,∗
ωX |N ,M

1
ωX |N ) (59)

where d∗ is a distance or divergence.

Because the high dimensionality of ωX may be at the origin of numerical problems, we choose

λ ∈ IR, an adequate subparameter of ωX , which takes into account the properties which we want to put in

evidence. Thus, we look for a characteristic of the nonparametric specification ωX that express how far is

ωX from the closest parameter generated by the parametric specification. Let us write γXk(θ, π(1), π(2))
for the sampling probability of the cell k ∈ RX in the parametric model. For a given value of the

parameter θ, here the polychoric correlation, and the thresholds defined on the marginals of ξ scaled on

the [0, 1]-interval, we have that:

γXk(θ, π
(1), π(2)) = P 0(X = k | θ, π(1), π(2)). (60)

The value of θ making γXk(θ, π(1), π(2)) “closest” to ωX is obtained through a distance, or a diver-

gence, between two distributions ωX = (ωk : k ∈ RX) and γX = (γk : k ∈ RX) under the condition

of common marginal distribution implied by ωX , namely (π̃(1)(ωX), π̃(2)(ωX)). Several specific forms

of λ may be envisaged, viz.

λ0(ωX) = min
θ

 ∑
k∈RX

ωXk log

(
ωXk

γXk(θ, π̃(1)(ωX), π̃(2)(ωX))

) (61)

λ1(ωX) = min
θ

∑
k∈RX

| ωXk − γXk(θ, π̃
(1)(ωX), π̃(2)(ωX)) | (62)

λ2(ωX) = min
θ

∑
k∈RX

( ωXk − γXk(θ, π̃
(1)(ωX), π̃(2)(ωX)) )2 (63)



5 TESTING NORMALITY IN THE BIVARIATE CASE 14

If we choose the Kullback-Leibler divergence, the test statistic is:

d(N) = d∗KL(M0,∗
λr|N ,M

1
λr|N ), r = 0, 1 or, 2. (64)

5.3 Posterior distributions in both models

Let us now discuss how to obtain numerically the two posterior distributions required for evaluation of

(64). For the alternative model, we use the specification of the prior distribution of ωX , as given in (48),

and take advantage of its natural conjugate– property, w.r.t. the multinomial sampling:

ωX | N ∼ Did(n0 F0 +N). (65)

For the null model, is taken as:

MωX |θ,π = E0[ M1
ωX |N | θ, π ]. (66)

Therefore, the posterior distribution in the extended model is given by:

M∗,0
ωX |N = E0[ M1

ωX |Ñ | N ] (67)

where Ñ is a virtual sample from Q0 such that Ñ ⊥⊥ N | θ, π;Q0, for details see Florens, Richard and

Rolin (2003).

When generating a sample fromM0,∗
λ|N , we firstly need to generate a sample of the posterior distribu-

tion of the parameter (θ, π) in the null model, then we generate the virtual sample Ñ from the sampling

distribution P 0
X|θ,π. Finally a sample from M1

ωX |Ñ in the alternative model is generated and the func-

tional λ is evaluated. The generation of the posterior distribution in the null model is a parametric

problem, and it is treated with a MCMC algorithm.

In order to describe an MCMC algorithm in the null model, the lowercase letters are used for densi-

ties w.r.t. a σ-finite measure. Let us also denote by N (1) and N (2) the marginal totals of the contingency

table; they are equivalent to the empirical distributions of X1 and X2 respectively; more explicitly:

N (1) = (Nk1,• : k1 ∈ {1, . . . , r1}) where Nk1,• =
∑

1≤k2≤r2

Nk1,k2 (68)

N (2) = (N•,k2 : k2 ∈ {1, . . . , r2}) where N•,k2 =
∑

1≤k1≤r2

Nk1,k2 . (69)

In both models the sampling distributions of these marginal totals are multinomial, namely:

E0 : N (i) | θ, α ∼ MN(ri)(n, π
(i)), i = 1, 2 (70)

E1 : N (i) | ψ, α ∼ MN(ri)(n, π
(i)), i = 1, 2. (71)
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We then build the following accelerated Gibbs sampler:

m0(π(1) | π(2), θ,N) ∝ m0(π(1) | N (1))
p0(N | π(1), π(2), θ)
p0(N (1) | π(1))

(72)

m0(π(2) | π(1), θ,N) ∝ m0(π(2) | N (2))
p0(N | π(1), π(2), θ)
p0(N (2) | π(2))

(73)

m0(θ | π(1), π(2), N) ∝ m0(θ) p0(N | π(1), π(2), θ ) (74)

Taking into account the prior independence (44) and (40), the acceleration is obtained by substituting in

(72) and in (73), the usual terms m0(π(i)) by the ratio m0(π(i) | N (i)) ∗ [p0(N (i) | π(i))]−1, i = 1, 2.

Indeed, in the Gibbs sampler, the posterior distributions m0(π(1) | N (1)) and m0(π(2) | N (2)) are easily

simulated thanks to the specification (45) and (44), and they are close to the target distributions. For

the computational implementation, we use the algorithm developed in Damien, Wakefield and Walker

(1999).

Finally, the test statistic is computed by Monte-Carlo integration using the algorithm developed in

Wang, Kulkarni and Verdú (2005), and is calibrated against the predictive distribution of the null model,

P 0
N , by simulation.

6 Simulations

Description By means of these simulation exercises, we want to check two issues raised by Section 5.

Firstly whether the suggested algorithm has a suitable numerical behaviour and secondly whether the

proposed test procedure is able to discriminate hypotheses. In all simulations, we consider a same

construction of the BPTV, namely that given in (66).

The simulations required in this exercise appear in four different steps:

(i) The generation of simulated contingency tables N is determined by a particular sampling procedure.

In this exercise, we consider samplings from the alternative region.

(ii) The evaluation of the statistic d(N) in (64) is obtained as a particular case of the general procedure

sketched in Section 5. Note that this step does not depend on the way the data has been simulated.

This evaluation requires, as an intermediary step, the simulation of the posterior distributions

M0
ωX |N and M1

ωX |N .

(iii) The estimation of the predictive distribution P 0
d(N) is obtained through an iid simulation of Ñ from

P 0
N . Each simulated Ñ is transformed into d(Ñ) obtained through the same procedure as (ii).

(iv) The coverage rate, i.e. the percentage of cases where the test statistic (64) falls in the 0.05 right

tail of the null predictive distribution. This one is used as a measure of the discriminating power

of the procedure. The empirical coverage is expected to be higher than 0.05 and to increase with
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the sample size. As the test statistic is calibrated by simulation, these coverage rates are random

variables.

Let us be more specific on the simulations presented in steps (i) and (ii) above, the last two steps

being already explicit enough.

For the first step we generate two scenarios leading to KxK contingency tables, with K = 3, 4,

issued from repeated generation of ordinal data and for each scenario we consider two possibilities.

In the first possibility (A) we consider directly the Bayesian experiment concentrated on (N,ωX ), the

manifest variable and on the parametrization identified by the manifest variable, without generating first

the latent variable from the alternative model. In the second possibility (B) we first generate a point ψ

from the region of the alternative model characterised by a finite mixture of normal distributions from

which we simulate a table N and proceeds as in the first possibility. The motivation for examining these

two possibilities is to check whether they lead to different discriminating powers of the encompassing

test. For each of these two possibilities we repeat two trials, in order to check the stability of the

algorithm, and evaluate a coverage rate.

For the second step, we first simulate, for each scenario, and for each sample N generated from step

(i), the posterior distributions M0,∗
ωX |N and M1

ωX |N from which we derive M0,∗
λ0|N and M1

λ0|N with λ0 as

defined in (61) and finally evaluate d(N) = d∗(M0,∗
λ0|N ,M

1
λ0|N ).

It should be emphasised that all these simulations, in the null and in the alternative experiments, are

based on the predictive distributions of the latent and/or of the manifest variables, given that we simulate

first the prior distribution and next the corresponding sampling distribution, under respectively the null

and the alternative experiment. Therefore the results of these simulations do not concern the sampling

properties but the Bayesian properties of the encompassing test.

In both scenarios, the latent null model has the same structure as in Section 5:

ξ(`) | θ ∼ ind. N2(0, R), ` = 1, . . . , n R =

(
1 θ

θ 1

)
θ + 1

2
∼ Be(1, 1),

(75)

with n = 20, 50, 100, 200, 500 and 1000.

Each contingency table is a result from the discretization of a vector of latent variables, the threshold

of which may be characterised by a point in a Simplex, as in (43). For both the null and the alternative

hypotheses, these points are generated for each margin i, through a Dirichlet distribution

δ(i) ∼ DiK(n0 P0), i = 1, 2, K = 3, 4 (76)

with n0 = 9, P0 = (1, 1, 1)>/3 for K = 3 and n0 = 16, P0 = (1, 1, 1, 1)>/4 for K = 4. The statistical

null model is the same as (47).

For each scenario, corresponding to K = 3 or 4, the two possibilities (A) and (B) for generating
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points from the alternative model specifications are given below.

Alternative model: First possibility (A)

N | ωX ∼ MNd(n, ωX),

ωX ∼ Did(n0 Q0),
(77)

with Q0 = (1, 1, 1) (1, 1, 1)>/9 and for the scenario 1, and Q0 = (1, 1, 1, 1) (1, 1, 1, 1)>/16 and n0 =
16 for the scenario 2. In this possibility, the ordered nature of the margins is not taken into account.

As the encompassing test relies on the statistical model obtained after integration of the latent variables,

the distribution of the structural parameters (α, ψ) conditionally on the identified parameter (ωX) is

arbitrary and therefore is not specified in this possibility.

Alternative model: Second possibility (B)

In this case, we explore a particular region of the parameter space, namely finite mixtures of normal

distributions. These distributions are parametrized, see (78), by a finite number of characteristics denoted

as ψ̃:

ξ | ψ̃ ∼
NC∑
1

qiN(µi,Γi) (78)

where

ψ̃ = (NC , q, µ, ρ)

q = (q1, . . . , qNC
), µ = (µ1, . . . , µNC

), ρ = (ρ1, . . . , ρNC
)

Γi =

(
1 ρi

ρi 1

)
,

The prior distribution is specified as:

NC − 1 ∼ Po(2)

q | NC ∼ DiNC
((1, . . . , 1))

⊥⊥
1≤i≤NC

µi | NC , q, µi | NC , q ∼ N2(0, I)

⊥⊥
1≤i≤NC

ρi | NC , q, µ,
ρi + 1

2
| NC , q, µ ∼ Be(1, 1)

where Po(2) denotes a Poisson distribution of parameter equal to 2.

The thresholds (in [0, 1]) defining the discretization are specified as in the null model i.e. (76). The

test is calibrated using 500 samples simulated from the null model.

Remark that both in the null model and in the two alternatives, the sampling distribution of the

corresponding statistical models is the same, namely the multinomial sampling; in the two alternative

specifications, the identified parameter is saturated; the difference between the two possibilities is in the

prior distributions of the identified parameter even though the support in both cases is the same Simplex
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Sd−1.

The coverage rates are estimated as follows. For the null hypothesis, we simulate in each case 500
contingency tables Ñ from Q0 and evaluate each time the test statistic d(Ñ) corresponding to (64). The

empirical distribution of these simulation provides an estimation of the null predictive distribution P̂ 0
d(N)

and an estimation of the 0.95-quantile q̂00.95.

Next we simulate 500 contingency tables ÑA from one alternative possibility (A) and estimate a

coverage through the percentage of cases where the statistic d(ÑA) is larger than the threshold q̂00.95.

For the possibility (B), we retrieve in each trial, the same simulation under the null hypothesis

Q0 already obtained for the possibility (A), but generate twice other 500 contingency tables from the

alternative possibility (B). Thus, for given n, the two trials of possibility (A) require 4x500 simulations

whereas the two trials of possibility (B) require 2x500 new simulations. Therefore each row of Tables 1

and 2 requires 6x500 simulated contingency tables and evaluations of the statistic d(N).
For each trial, and each possibility, the computation of d(N), see (64), is kept unchanged: only

the way N is simulated is modified; moreover, the posterior distribution M1
ωX |N has always the same

analytical form, as given in (65) and, for evaluating d(N), M1
λ0|N is deduced from M1

ωX |N .

Results The results are summarised in the Table 1 for the scenario 1 (K = 3) and in the Table 2 for

the scenario 2 (K = 4). For the first possibility (A), with n = 20 we observe (first row) a coverage rate

0.406 for the first trial and 0.430 for the second trial. For the second possibility () these values are 0.068
and 0.066.

First possibility (A) Second possibility (B) time
n trial 1 trial 2 trial 1 trial 2

20 0.406 0.430 0.068 0.066 14′

50 0.676 0.610 0.096 0.106 17′

100 0.808 0.826 0.124 0.184 19′

200 0.946 0.912 0.226 0.262 21′

500 0.978 0.978 0.352 0.400 15′

1000 0.988 0.994 0.474 0.428 29′

Table 1: Coverage rates for a 3 X 3 table

First possibility (A) Second possibility (B) time
n trial 1 trial 2 trial 1 trial 2

20 0.426 0.374 0.092 0.076 28′

50 0.776 0.794 0.110 0.122 32′

100 0.946 0.944 0.184 0.178 33′

200 0.990 0.988 0.258 0.298 35′

500 1.000 1.000 0.434 0.406 42′

1000 1.000 1.000 0.556 0.544 54′

Table 2: Coverage rates for a 4 X 4 table
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In both scenarios, and with the two alternative model specifications, the coverage rates are consis-

tently increasing with the sample size. For all sample sizes, we also observe the stability of the coverage

rate in the two trials for the two specifications of the alternative model, in both scenarios.

From the two scenarios, we find that the discrimination power increases with the value of K, i.e.

the refinement of the discretization; this is coherent with the fact that an ordinal variable with more

values provides more information. The difference of the coverage rate between the two possibilities, (A)

and (B), of the alternative model is interesting. Indeed, let us compare the determinant and the trace of

the predictive covariance matrix of the KxK − 1 free cells frequencies Nij , for K = 4. For the first

possibility (A), the predictive covariance matrix, see Bernardo and Smith (1994), is given by:

V arA(vec(N)) = n
n0 + n

n0 + 1
(diag(vec(Q0))− vec(Q0)vec(Q0)>) (79)

where vec transforms a matrix into a (column) vector and again Q0 = (1, 1, 1, 1) (1, 1, 1, 1)>/16. For

the second possibility (B), we simulate a sample of size 1000 to estimate these matrix. The results are

given in Table 3.

n 20 50 100 200 500 1000
Possibility (A)

Det 137193.6 1.1352e+ 15 1.7547e+ 23 6.4506e+ 31 2.8291e+ 43 2.4030e+ 52
Trace 37.22426 170.6112 599.7243 2233.456 13338.69 52527.57

Possibility (B)
Det 19730400 4.0336e+ 17 2.2701e+ 26 9.4263e+ 34 3.5540e+ 46 7.6234e+ 55
Trace 56.61611 288.5579 1123.910 4303.456 25828.93 107384.3

Table 3: Predictive variances for the alternatives

Considering the determinant and the trace of a covariance matrix as (rough) measures of global

dispersion, Table 3 shows that the possibility (B) displays more variation than possibility (A) ( in par-

ticular for a sample size of 100 on, the determinant of the covariance matrix is 1000 times bigger. This

difference is a likely explanation of the higher coverage rate of possibility(A) shown in Tables 1 and 2.

The computation time for simulating the contingency tables, estimating the predictive distribution

P̂ 0
d(N), the corresponding quantile q̂00.95 and locating, relatively to the threshold q̂00.95, the statistic test

generated under the alternatives is negligible, once the values of d(N)’s have been obtained. But the

computations of the test statistic d(N) is heavier, even though the posterior distributions M0,∗
λ0|N and

M1
λ0|N are based on 100 drawings only. This is due to the fact that an MCMC algorithm is used for each

simulated sample. In the last column we give a computation time obtained by averaging over the 6 series

of 500 simulations corresponding to each row. The computation time increases with the sample size n,

but less than proportionally. Moreover the computation times to the 4x4 tables is roughly the double of

the computation time for the 3x3 tables, corresponding to a switch from 9 to 16 cells.

From this simulation exercise, it may be concluded that the proposed procedure is numerically feasi-

ble and enjoys of a reasonable discriminatory power but, as to be expected with nonparametric models,

requires substantial sample sizes for being reliable.
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7 Application

We now examine the working of the test so far developed on real data taken from Vandenhende (2003)

and dealing with a meta-analysis of clinic trials on acute migraine. The two ordinal variables are: X1

= the intensity of pain and X2 = nausea presence. The observed contingency table, corresponding to

n = 801, is given in Table 4. In this exercise, we try to evaluate two issues: How quickly the evaluations

of interest, p-values and 0, 95-quantiles, tend to stabilise and how quickly the computation time increases

with the number of replications.

X1 \X2 1 2 3 4 Totals
1 136 13 3 2 154
2 174 49 14 2 239
3 121 80 41 3 245
4 37 40 53 33 163

Totals 468 182 111 40 801

Table 4: Data of clinical trials

Let us analyse these data under the same null models as in the simulation exercise, namely (75)

and (76) with K = 4 and therefore the same statistical models as in (47). For the alternative model

we again take a nonparametric specification with Dirichlet prior as in (77) with n0 = 16 and Q0 =
(1, 1, 1, 1) (1, 1, 1, 1)>/16. We want to estimate a Bayesian p-value, i.e. the null predictive probability

that the statistic d(N), in (64) with λr = λ0(ωX) in (61), takes a value higher than the observed one.

Once the dataN , in the form of Table 4, have been obtained, the Bayesian encompassing test consists

in evaluating the statistic d(N) and in estimating the null predictive distribution P 0
d(N). The evaluation

of d(N) is relative to the two Bayesian models characterised by Q0,∗ and Q1 whereas the null predictive

distribution of d(N) depends on Q0 only, once the functional form of d(N) has been fixed. In this

section we want to evaluate some numerical aspects of the computations, relative to the particular sample

N given in Table 4.

The evaluation of the statistic d(N) requires firstly to evaluate the posterior distributions M0,∗
λ0|N and

M1
λ0|N , respectively obtained from M0,∗

ωX |N and M1
ωX |N . The simulations of M0,∗

ωX |N require an MCMC

integration with, say B1, replications whereas for the simulations of M1
ωX |N , a Dirichlet distribution,

we decide to generate B2 = 1000 replications as they do not rise numerical difficulties. Once the ωX ’s

have been simulated by one of these posterior distributions, they are transformed into λ0(ωX) and the

distributions M0,∗
λ0|N and M1

λ0|N are constructed accordingly. Finally the statistic d(N) is computed as a

distance between M0,∗
λ0|N and M1

λ0|N as in (64). In this exercise the numerical stability of the proposed

procedure is examined by repeating the computations for two different values of B1, namely 400 and

800. The estimation of the predictive distribution P 0
d(N) raises more substantial problems because we

want to derive p-values and 0.95-quantiles, i.e. properties of the right tail.

The results, summarised in Table 5, are organised as follows. For each two values of (B1, B2) equal

to (400, 1000) and (800, 1000), we compute 10 times d(N) and report its average, namely 0.6480 and
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0.6329 (first rows). Next we simulate the predictive distribution of d(N) under the null model by using

4000 replications, these 4000 replications are separated into 8x500, 4x1000 and 2x2000 in order to

estimate and compare, for each group, the estimations of the 0.95-quantile and the p-value. The average

time corresponds to the average time required for simulating B0 replications of d(N) under the null

hypothesis, namely 500, 1000 and 2000. That time is essentially proportional to the simulation sample

size B0.

d̂(N) = 0.6480 B1 = 400 B2 = 1000
B0 = 500 B0 = 1000 B0 = 2000

trial q̂00.95 p-value q̂00.95 p-value q̂00.95 p-value
1 0.8875 0.100 0.9424 0.106 0.9395 0.1035
2 0.9464 0.112 0.9347 0.101 0.9157 0.099
3 0.9494 0.106 0.8938 0.094
4 0.8853 0.096 0.9166 0.104
5 0.8839 0.092
6 0.9328 0.096
7 0.6888 0.066
8 1.1378 0.142

Average 0.9140 0.10125 0.9219 0.10125 0.9276 0.10125
St. Dev. 0.1230 0.0213

Max 1.1378 0.142
Min 0.6888 0.066

Aver. time 170′ 339′ 678′

d̂(N) = 0.6329 B1 = 800 B2 = 1000
B0 = 500 B0 = 1000 B0 = 2000

trial q̂00.95 p-value q̂00.95 p-value q̂00.95 p-value
1 0.9182 0.104 0.9460 0.107 0.9460 0.102
2 0.9474 0.110 0.9409 0.097 0.9123 0.1045
3 0.9556 0.102 0.8934 0.103
4 0.8968 0.092 0.9282 0.106
5 0.9322 0.102
6 0.8792 0.104
7 0.8644 0.096
8 1.0745 0.116

Average 0.9335 0.10325 0.9271 0.10325 0.9292 0.10325
St. Dev. 0.0653 0.00748

Max 1.0745 0.116
Min 0.8792 0.092

Aver. time 281′ 561′ 1122′

Table 5: Tail properties of the predictive null distribution of d(N).

The numerical results motivate the following remaks:
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(i) The sizable difference the two averages of d(N), namely 0.6480 and 0.6329, suggests that different

values of B1 and probably of B2 also, possibly introduce different biases in the numerical evalu-

ation of the Kullback-Leibler divergence underlying d(N). When B1 increases from 400 to 800,

we probably have a better evaluation of d(N); we then observe, for B0 = 500, a decrease in the

standard deviation, from 0.1230 to 0.0653 and from 0.021 to 0.007.

(ii) When B0, the number of replications of the simulated samples, increases, the variability of the

p-values corresponding to each trial stabilises through an arithmetic mean process, i.e. for

(B1, B2) = (400, 1000), the third column (0.100, . . . , 0.142) is less stable than the fifth column

(0.106, . . . , 0.104) and less stable than the seventh column (0.135, 0.099). Whereas the averaging

of the evaluations of 0.95-quantile is less straightforward because of its non-linearity.

(iii) The computation time is high: The case when B1 = 800 is more or less twice than the time when

B1 = 400.

(iv) Finally we do not reject the normality hypothesis of the latent variables at the level of 0.05 in view

of the estimated values for the 0.95-quantile (around 0.9 for an d(N) estimated around of 0.6) and

for the p-value (around 0.10).

8 Conclusions

Polychoric correlations are frequently used for the analysis of ordinal variables when modeled as a dis-

cretization of an underlying latent variable and are typically introduced under a normality hypothesis.

This paper has revisited this hypothesis of normality with two objectives: Firstly to make explicit the

object of this hypothesis and secondly to deduce a more precise interpretation of the polychoric cor-

relations. These two objectives have been achieved by a systematic analysis of identification. One

basic object of identification is indeed to check the empirical meaning of the parameters in a structural

model: An unidentified parameter may not be consistently estimated and may not be interpreted as the

expectation or as the probability limit of some statistic.

The basic idea is to decompose the joint distribution of the latent variable into two variation-free

components: The set of its marginals and a copula. The first result, Theorem 2.1, says that the marginals

are not identified. Therefore, the normality hypothesis, underlying the polychoric correlations, only

bears on the gaussianity of the copula. As a consequence, testing the normality of the latent variables

should be viewed as testing the gaussianity of the copula only.

As the range of the manifest variable is a finite set, the sampling distribution is multinomial is

saturated under a nonparametric alternative with parameter ωX . Therefore testing the form of the dis-

tribution of the latent variables may be achieved only if the null hypothesis implies restrictions on ωX .

When testing the normality, Theorem 3.1 and equation (19) give identification conditions which make

the test feasible. It should be stressed that the implicit null hypothesis is not the hypothesis that the cop-
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ula of ξ is Gaussian but is the hypothesis that the copula of ξ implies the same parametric restriction,

on the saturated model, as a Gaussian copula.

As a consequence, the interpretation of the polychoric correlations within a normality assumption

rests on an arbitrary (and untestable) choice of selecting normal marginals and on a testable hypothesis

of gaussian copula. There is a considerable literature, particularly in social sciences, concerning the

measures of association among ordinal variables but in the framework of the discretization model (1)

and (9), any intrinsic measure of association should be coordinate free (see Kruskal (1958) for similar

conclusions) and only based on the copula of the latent variables.

The copula specification (23) and (24) endows the threshold values π(i)
k with a simple interpretation

of the expected value (or probability limit) of a sample proportion. Such an interpretation does not imply

that the marginal distributions of the latent variables are uniform on [0, 1]: it only refers to the always

true (for continuous distribution) and therefore unrestrictive fact that the latent continuous variables

transformed by their own distribution functions are uniformly distributed on [0, 1]. Furthermore, the

threshold values π(i)
k are easily estimated, unbiasedly and consistently, by the sample proportions without

requiring arbitrary specifications of the marginal distributions ψi. This is different from the array α

where a(i)
k can be interpreted relatively to an arbitrary specification of ψi only.

Once the proper role of the normality hypothesis has been recognised one may envisage testing that

assumption. In this paper we focus the attention on the bivariate case in the framework of a specification

test; i.e. a test where the alternative hypothesis is a general nonparametric one.

As far as a specification test is concerned, a Bayesian encompassing test has been developed for

the case of total observability in Florens, Richard and Rolin (2003). For the case of partial observ-

ability, Almeida and Mouchart (2005, 2007) consider two different situations, the second one of which

encompasses the discretization model. The construction of the test is presented in the Section 5 as an

application of the Theorems 1, 2 and 3 in Almeida and Mouchart (2007). These theorems ensure a

suitable meaning of a test statistic based on the manifest variables only.

Next, we have controlled the operationality of the proposed test. We have noticed that the com-

putation of the test statistic involves estimating the posterior distributions of the identified parameters

both under the null and under the alternative model. This posterior distribution under the null model

is simulated by an MCMC algorithm which makes the numerical procedure heavier. The simulations,

in Section 6, suggest that the proposed test is feasible, in terms of computational cost and reasonably

reliable in terms of coverage rate. The example of application treated in Section 7 suggests that the

proposed test can be operational, even if the computational cost is high and the choice of the simulation

parameters for the calibration has to face a trade-off between computational time and precision.
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A Remarks on notations

Some explanation on the notation used in this paper might be useful. We use the capital letters M , P

and Q for probability measures on the parameter space, on the sample space and on the product space

respectively. The superindex makes reference to the model considered (when we compare models), and

the subindex refers to the relevant random element; when there is no subindex, a complete space is

referred to.

In the nonparametric specification we use undominated families of distributions, the existence of

densities is not always justified; thus we find preferable to work in terms of probability measures. In

particular a measure on the product space is often defined through the Markovian product, denoted ⊗.

For example, for any A, a measurable set in the θ-space, and any B, a measurable set in the ξ-space, we

define:

(Mθ ⊗ Pξ|θ) (A×B) =
∫
A
Pξ|θ(B) dMθ, (80)

where Pξ|θ denotes a transition of probability used as conditional probability of (ξ | θ). The Markovian

product measure is defined using the extension theorem over the σ-field generated by the cylinders. In

the dominated case, this corresponds to the measure defined by the product of densities:

q(θ, ξ) = m(θ) p(ξ | θ). (81)

Finally, we also use the simplified notation: Mψ =
∫
Mψ|ξdPξ = E[ Mψ|ξ ] as a compact notation

for:

Mψ(A) =
∫
Mψ|ξ(A)dPξ, (82)

where A is a measurable set (of the ψ-space), Mψ|ξ is a transition of probability and Pξ is a probability

measure ( on the ξ-space).

B Proof of Theorem 3.1

Proof. From (16), we need to prove:

P (• | R,α) 6= P (• | R̃, α̃) ⇐= (R,α) 6= (R̃, α̃).

The proof is split into two parts:

(i) P (• | R,α) 6= P (• | R̃, α̃) ⇐= α 6= α̃.

Heuristically, this implication comes from the fact that the thresholds only depend on the marginal

distributions, assumed to be N(0, 1) for each coordinate. A more precise argument runs as follows. The

assumption P (• | R,α) = P (• | R̃, α̃) is by definition equivalent to:

∀ k ∈ RX P (X ≤ k | R,α ) = P (X ≤ k | R̃, α̃ ).
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Let us consider α(i)
k 6= α̃

(i)
k for some i = 1, . . . , I k = 1, . . . , ri, define i = {1, . . . , I} \ {i} and let

k = (r1, . . . , ri−1, k, ri+1, . . . , rI). We obtain for any value of R and R̃:

P (X ≤ k | R,α) = P (ξ` <∞, ` ∈ i, ξi ≤ α
(i)
k | R) = Φ(α(i)

k )

6= P (X ≤ k | R̃, α̃) = P (ξ` <∞, ` ∈ i, ξi ≤ α̃
(i)
k | R̃) = Φ(α̃(i)

k ).

Therefore, by the injectivity of Φ, the standard normal distribution function,α is identified.

(ii) P (• | R,α) 6= P (• | R̃, α) ⇐= R 6= R̃.

As |R| 6= 0, one has |ρi1i2 | 6= 1 ∀ i1 < i2. Let ρij 6= ρ̃ij with i < j, and consider

k = (r1, , . . . , ri−1, k1, ri+1, . . . , rj−1, k2, rj+1, . . . , rI);

then:

P (X ≤ k | R,α) = P ( ξ` <∞, ` ∈ {1, . . . , I} \ {i, j}, ξi ≤ α
(i)
k1
, ξj ≤ α

(j)
k2
| R)

= Φρij (α
(i)
k1
, α

(j)
k2

),

where Φρij is the bivariate normal distribution function with zero mean, unit variance and correlation

equal to ρij . For all ρij ∈ ]− 1, 1[ and (a, b) ∈ IR2; one has:

∂

∂ρij
Φρij (a, b) = ϕρij (a, b) > 0

where ϕρij is the bivariate normal density function corresponding to Φρij . (see Johnson and Kotz (1972)

or Tallis (1962)). Thus, for all (a, b) ∈ IR2, the mapping ρij 7→ Φρij (a, b) is a strictly increasing

continuous function, so it is injective. Then by the injectivity of this function:

P (X ≤ k | R,α) 6= P (X ≤ k | R̃, α)

So R is identified.

C Copula: a short overview

Once it is recognized that the marginal distributions of the latent variables are not identified in the

discretization model, it is natural to decompose the characterization of the multivariate distribution of

the latent variables into, on the one hand, the set of its marginal distributions and, on the other hand, a

complementary aspect that would be variation-free with respect to the first one and would capture the

association between the latent variables. This is exactly the idea of a copula, a precise definition and

characterization of which are now given.

Definition 2. A copula C is the distribution function of a multivariate probability distribution with
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uniform margins on the unit interval.

We need two main results about copulas, the first one is a simple application of the integral transform

theorem and the other one provides its reciprocal affirmation. Hereafter we use C or F indifferently as

probability measure or as distribution function when there is no ambiguity. The proof of these two

theorems, along with a detailed study of copulas may be found in Nelsen (1999).

Theorem C.1. Let F1, . . . , FI be I univariate distributions and C a I-dimensional copula. Then

F (x1, . . . , xI) = C(F1(x1), . . . , FI(xI)) defines a multivariate distributionF with marginsF1, . . . , FI .

Theorem C.2. (Sklar’s theorem) Let F be a I-dimensional distribution with continuous marginal distri-

butionsF1, . . . , FI . ThenF has a unique copula representationF (x1, . . . , xI) = C(F1(x1), . . . , FK(xI)).

The last two theorems give us a bijection between the set of I-dimensional multivariate distributions

and the Cartesian product of the set of I univariate distributions and the set of I-dimensional copulas.

An important property of copulas is their invariance to the group of strictly increasing coordinate-wise

transformations; more precisely the following result is immediate:

Theorem C.3. If F is a multivariate distribution on IRI and g ∈ G(I), then F and F ◦ g−1 have the

same copula. More specifically, if

F (x1, . . . , xI) = C(F1(x1), . . . , FI(xI)),

then for any g ∈ G(I):

F ◦ g−1(y1, . . . , yI) = C(F1 ◦ g−1
1 (y1), . . . , FI ◦ g−1

I (yI))

A copula of a particular interest is the following:

Definition 3. For any correlation matrix Γ the corresponding Gaussian copula is defined by:

CGΓ (u1, . . . , uI) = ΦΓ(Φ−1(u1), . . . ,Φ−1(uI)) (u1, . . . , uI) ∈ [0, 1]I

where Φ is the standard normal univariate distribution function.

Thus a multivariate normal distribution may be viewed as a Gaussian copula along with normally dis-

tributed margins.
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D Bayesian encompassing: A short review

In line with the seminal papers Cox (1962, 1961) about testing non-nested hypotheses, the encompassing

principle has been developed for comparing two experiments sharing a same sample space; the main idea

is to compare the inference made on the parameter of the second model when using the first one through

an embedding mechanism and when using the second model directly, for details see Mizon (1984) and

Mizon and Richard (1986). In the Bayesian framework, the generalities of this procedure are exposed

in Florens, Mouchart and Rolin (1990, section 3.5.2) and Florens and Mouchart (1993), and consists

in extending the Bayesian experiment E0 to E0,∗ in order to include, under appropriate conditions, the

parameter of the alternative Bayesian experiment E1. The test is completed by comparing the posterior

distributions of ψ in E1 and in E0,∗. Heuristically, the null hypothesis is not to be rejected if the two

posterior distributions are not too different. The quantification of that difference is obtained by using a

distance or discrepancy between probability measures defined on the parametric space. From a Bayesian

point of view, the encompassing principle may be viewed a symmetrization on the parametric space of

the comparison of experiments, in the sense of Blackwell (1951) and Le Cam (1964) originally intro-

duced for developing the concept of sufficiency on the sample space; for details, see Florens, Mouchart

and Rolin (1990, section 3.5).

Let us be more explicit and consider two statistical models on a same sample space, namely {P 0
ξ|θ :

θ ∈ Θ} and {P 1
ξ|ψ : ψ ∈ Ψ}, endowed with prior distributions, M0

θ and M1
ψ respectively. The first

model may be extended so as to incorporate also ψ, the parameter of the second model, by specifying

a probability transition to represent a conditional distribution of ψ | θ, ξ. A Bayesian Pseudo-True

Value, BPTV, is such a transition endowed with a further condition of conditional independence, namely

ψ ⊥⊥ ξ | θ, also called BPTV condition, which gives to θ a property of sufficiency w.r.t. ψ within the

extended model. Moreover, it permits us to interpret the first model as the marginalization by sufficiency

of the extended model. In the notation of Bayesian experiments as Markovian product, the extended

model can be written as:

Q0,∗ = M0
θ ⊗ P 0

ξ|θ ⊗Mψ|θ under the BPTV condition; ξ ⊥⊥ ψ | θ;Q0,∗. (83)

Thus, the comparison of Bayesian inferences is made through comparing the posterior distributions

of ψ both in the extended and in the alternative models, namely: M0,∗
ψ|ξ and M1

ψ|ξ. A statistics of test

is accordingly a distance or divergence between these two posterior distributions. This tests statistic is

calibrated against the predictive measure in the null model, P 0
ξ .

One possibility for the specification of the BPTV suggested in Florens and Mouchart (1993), is the

sampling expectation in the first model of the posterior measure in the second one, namely:

Mψ|θ =
∫
M1
ψ|ξdP

0
ξ|θ ( = E0[M1

ψ|ξ | θ ] ) (84)

When considering that the BPTV Mψ|θ provides an interpretation of ψ within the first model, the sug-
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gestion (84) is based on the idea that one way of looking at ψ from the first model point of view, is

to evaluate the sampling expectation, under Q0, of the posterior distribution of ψ obtained in its own

model, namely the second one. This is in line with Cox (1961)’s paper.

Florens, Richard and Rolin (2003) develops an operational specification test. They use as null hy-

pothesis a parametric specification of the sampling model and, as alternative, a non parametric one; in

the alternative model, a Dirichlet process is used as prior distribution. With this specification and using

the BPTV specified as in (84) they show that the posterior measure M0,∗
ψ|ξ is a mixture of Dirichlet pro-

cesses and they use direct simulation of Dirichlet process, as developed in Rolin (1992) or in Sethuraman

(1994), in order to compute the statistics of test and for its calibration against the predictive measure in

the null model, P 0
ξ . For a non parametric alternative they suggest to focus the attention on the posterior

distributions of a finite dimensional functional of the parameter in the alternative model, say λ.

In Almeida and Mouchart (2005, 2007) the encompassing specification test has been extended to the

cases of partial observability; in the first paper when the function defining the partial observability is

completely known, and the second paper when that function is known up to a Euclidean parameter only.

The discretization model corresponds to the second case.
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