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Abstract

It is widely accepted that the Rasch model with abilities distributed according to a normal dis-
tribution is identified provided that the mean is fixed at zero. Nevertheless, the following questions
arise: why is this result valid? Is it still valid if the distribution of the random effect (namely, the
abilities) changes? Is it still valid if both the link function defining the item characteristic curve
(ICC) and the distribution of the random effect change? What about the asymptotic behavior of the
posterior expectation of identified parameters? Finally, what can we learn about model construction
from these eventual identification results? This paper is intended to answer these questions.

Keywords: Sufficient parameter; Minimal sufficient parameter; Bayesian identifiability; Estimability;
Monotonicity of the ICC; Generalized Linear Mixed Model.

1 Introduction

1.1 Rasch models specified as a fixed effect model

Rasch models are typically specified either as a fixed effect model or as a mixed effect model. The
fixed model assumes that the sequence of binary random variables {Yij : 1 ≤ i ≤ n, 1 ≤ j ≤ m}
is mutually independent; here, Yij = 1 if subject i correctly answers item j. The response pattern of
person i is written as Y i = (Yi1, . . . , Yim)′ ∈ {0, 1}m . It is also assumed that the probability of the
event {Yij = 1} depends on two fixed effects, namely a subject effect θi ∈ R and an item effect βj ∈ R,
in such a way that

P [Yij = 1 | θi, βj ] = F (θi − βj), i = 1, . . . , n, j = 1, . . . ,m, (1.1)

where F is the logistic distribution function. The function F is typically called link function. The subject
effect θi represents the ability of subject i, whereas the item effect βj corresponds to the difficulty of
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item j; see Rasch (1960). Using Neyman and Scott’s (1948) terminology, the abilities correspond to
incidental parameters, the dimension of which increases with the sample size, whereas the difficulties
correspond to structural parameters.

As it is well known (see, in particular, Rasch, 1966), the parameter of interest (θ1, . . . , θn, β1, . . . , βm)
is not identified by the observations. Since the pattern responses Y 1, . . . ,Y n are mutually independent,
the identifiability of the parameters of interest is obtained using one observation only. Thus, the lack
of identifiability can be removed after introducing a linear restriction of the form a ′βm1 = 0 such that
a′11m 6= 0, where a ∈ Rm, βm1 = (β1, . . . , βm)′ and 11m = (1, . . . , 1)′ ∈ Rm, under which the mapping
(θ1 − β1, . . . , θ1 − βm) 7−→ (θ1, β

m
1 ) becomes injective. The identification restriction excludes the case

of constant difficulties among the items (i.e. βj = β for all 1 ≤ j ≤ m). This identification analysis is
entirely similar for all strictly increasing distribution function F .

1.2 Rasch models specified as a mixed effect model

Nevertheless, Rasch model is an example of the famous Neyman-Scott phenomenon (see Neyman and
Scott, 1948; and Lancaster, 2000), namely that the maximum likelihood estimate (MLE) of the structural
parameters is inconsistent due to the presence of the incidental parameters. Andersen (1973, 1980)
proved the inconsistency of the MLE of βj as n→∞ form = 2 items, while Ghosh (1995) extended the
proof for m > 2. Following Kiefer and Wolfowitz (1956), a way of recovering consistent estimates is to
consider the abilities as a random effect in the sense that the θi’s consist of independent random variables
with a common probability distribution Gϕ parameterized by ϕ. In this case, (1.1) should be viewed as a
conditional model, whereas the process generating the abilities corresponds to the marginal latent model.
More specifically, the Rasch model with random effects is defined by means of the following structural
hypotheses:

H1. Y 1, . . . ,Y n are mutually independent given (θ1, . . . , θn, β
m
1 ).

H2. For each person i, the distribution of Y i depends on (θi, β
m
1 ) only.

H3. For each person i, his/her responses {Yij : 1 ≤ j ≤ m} are mutually independent given (θi, β
m
1 ).

This corresponds to the Axiom of Local Independence.

H4. For each person i, Yij depends on (θi, βj) for all 1 ≤ j ≤ m; the specific functional dependency is
given by (1.1).

H5. The abilities θ1, . . . , θn are mutually independent given ϕ.

H6. (θi | ϕ) ∼ Gϕ for all 1 ≤ i ≤ n, where ϕ ∈ R+ is a scale parameter, that is

P [θi ≤ x | ϕ] = Gϕ([−∞, x]) = G([−∞, x
ϕ

]). (1.2)
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The inference is based on the structural Rasch model (also called statistical model) obtained after in-
tegrating out the random effect θi. The structural hypotheses H1, H2 and H5 ensure that the patterns
responses Y 1, . . . ,Y n are mutually independent given (βm1 , ϕ) with a common distribution given by

P [Y i = εi | βm1 , ϕ] =

∫
�

m∏

j=1

F (θ − βj)εij [1− F (θ − βj)]1−εij Gϕ(dθ), (1.3)

where εi = (εi1, . . . , εim) ∈ {0, 1}m; see, among others, Andersen and Madsen (1977), Bock and Aitkin
(1981), Thissen (1982), De Leeuw and Verhelst (1986) and Molenaar (1995). Model (1.3) corresponds
to a generalized linear mixed model (GLMM) with items as the main fixed effect and a random intercept,
which defines the student’s mastery level; see, among others, Mellenbergh (1994), Rijmen et al. (2003),
De Boeck and Wilson (2004) and Tuerlinckx et al. (2006).

1.3 Identifiability of the structural Rasch model

Kiefer and Wolfowitz (1956) –see also Pfanzagl (1970)– proved that the MLE of the structural parameter
–in this case, (βm1 , ϕ)– is consistent provided it is identified. The question is to know under which condi-
tions (βm1 , ϕ) is identified. Different answers can be traced in the related literature. In the psychometric
literature, sometimes it is assumed that Gϕ is completely known (see, e.g., Thissen, 1982, p. 176); the
strict monotonicity of the distribution function F in (1.3) is, therefore, sufficient to identify the item
parameters without additional restrictions. When Gϕ is known up to a scale parameter, it is generally
assumed (without proof) that the identification restriction needed to identify the Rasch model (1.1) (for
instance, β1 = 0) is sufficient to identify the structural parameters (βm1 , ϕ) in model (1.3); see, among
others, Adams, Wilson and Wang (1997), Smits and Moore (2004) and Rijmen and De Boeck (2005, p.
482). This approach means that the identifiability of the conditional model is sufficient for the identi-
fiability of the statistical model. Nevertheless, such an implication is in general false, as the following
counter-example shows: let X i ∈ R2 and ω = (a0, θ1, . . . , θn,Σ), where Σ is a positive definite 2 × 2
symmetric matrix. Suppose that

(θi | a0,Σ)
ind.∼ N (0, 1), (X i | ω)

ind.∼ N2

((
θi
a0θi

)
, Σ

)
(1.4)

and let (a0,Σ) have a prior distribution equivalent to the Lebesgue measure. It is clear that ω is iden-
tified by (X1, . . . ,Xn) and, consequently, that (a0,Σ) is identified by (X1, . . . ,Xn) conditionally on
(θ1, . . . , θn). If we marginalize this model with respect to θi, we obtain

(X i | a0,Σ)
ind.∼ N2

((
0
0

)
,

(
σ11 + 1 σ12 + a0

σ12 + a0 σ22 + a2
0

))
, (1.5)

loosing the identifiability of (a0,Σ).

When the distribution of the random effect is a normal N (µ, ϕ2), it is stated that two different identifi-
cation constraints can be imposed to obtain the identifiability of the structural parameter: either to fix the
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mean of θ at 0, or to set a particular βi equal to 0; see Bechger et al. (2003, p. 328) and De Boeck and
Wilson (2004, pp. 53-55) and the references mentioned there. On the other hand, Baker and Kim (2004)
mention that “the identification problem is solved via the scaling of the posterior ability distribution” (p.
174). These approaches are widely accepted although their validity need to be formally established.

The statistical literature is not more precise with respect to the identification problem mentioned above.
Chen and Dey (1998) pointed out that, when the distribution of the random effect is a normal N (0, ϕ2),
the variance ϕ2 “is nearly not identified” (p. 325), but they do not provide a definition of “nearly iden-
tified”. Swartz et al. (2004, p.3) state that any hierarchical model –an example of which is the Rasch
model specified as a mixed effect model– is unidentified; for a similar comment, see Gelfand and Sahu
(1999, p. 247).

1.4 Scope of the paper

The objective of this paper is to offer a clear bill about the identifiability of structural Rasch-type models.
Section 3 offers a formal proof about the identifiability of the Normal Ogive (or, Probit) Rasch model
(Lord, 1952) when the random effect is distributed according to a normal N (0, ϕ2). The strategy is es-
sentially based on a distinction between identified parametrization and structural parametrization, which
is discussed in Section 2. Section 5 extends the identification analysis for a general link function F and
a general distribution Gϕ known up to a scale parameter ϕ, obtaining the identifiability of (βm1 , ϕ) under
general regularity conditions on F and Gϕ. The case when G is known up to both a location parameter
and a scale parameter is discussed as a corollary of the previous results. The identification analysis used
in this section is mainly based on measurability arguments, which are described, in a general set-up, in
Section 4. Section 6 briefly discusses the estimability (or Bayesian consistency) of the b-identified pa-
rameter in the class of structural Rasch-type models. The paper finishes with some concluding remarks.

2 Preliminaries

The structural Rasch model corresponds to a family of sampling distributions P (· | βm1 , ϕ) defined
by (1.3), which are indexed by the structural parameters (βm1 , ϕ) ∈ Rm × R+. Let us remark that this
parameter space is very different from the parameter space corresponding to the Rasch model specified as
a fixed effect model, namely Rn× 〈11m〉⊥, where 〈11m〉 is the subspace generated by 11m. Consequently,
the identification problem we are dealing with corresponds to analyze the injectivity of the mapping
(βm1 , ϕ) 7−→ P (· | βm1 , ϕ). In order to establish such an injectivity, it is useful to distinguish between a
structural parametrization (which is not necessarily identified) and an identified parametrization. In the
case of the structural Rasch model, the basic probabilities are the probability of the 2m different possible
patterns responses, namely
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p12···m = P [Y11 = 1, . . . , Y1,m−1 = 1, Y1m = 1 | βm1 , ϕ]
p12···m̄ = P [Y11 = 1, . . . , Y1,m−1 = 1, Y1m = 0 | βm1 , ϕ]

...
p1̄2̄···m̄ = P [Y11 = 0, . . . , Y1,m−1 = 0, Y1m = 0 | βm1 , ϕ].

The p’s with less than m subscripts are linear combinations of them. Therefore, the structural Rasch

model can be completely described as a multinomial process, namely (Yi | θ) iid∼ Mult (2m, θ) for
1 ≤ i ≤ n, where θ = (p12···m, p12···m−1,m̄, . . . , p1̄,2̄,...,m̄). Since the mapping θ 7−→ Mult(2m, θ) is
injective (that is, the natural parameter of a multinomial distribution is identified), the identification of the
structural parameter (βm1 , ϕ) reduces to establish an injectivity between it and the identified parameter
θ. In the next section, this strategy is used to study the identifiability of the structural parameter (βm1 , ϕ)
in the context of the structural normal ogive (or, probit) Rasch model.

3 Identifiability of the Structural Normal Ogive Rasch Model

Let us start by the Normal Ogive (or, Probit) Rasch Model introduced by Lord (1952). This model
assumes that F = G = Φ, where Φ is the cumulative standard normal distribution. In this case, we have
that

P [Y11 = 1 | ϕ, β1 ] =

∫
�

Φ (ϕ τ − β1 ) Φ ( dτ ) = Φ

(
−β1√
1 + ϕ2

)
(3.1)

Since Φ is a strictly increasing function, it follows that
β1√

1 + ϕ2
is identified.

Now, considering the joint distribution of Y11 and Y12 , we obtain three equations with three unknown
parameters β1 , β2 and ϕ , namely

(i) P [Y11 = 1 | βm1 , ϕ ] = P [U1 ≤ −γ1 ] = Φ (−γ1 )

(ii) P [Y12 = 1 | βm1 , ϕ ] = P [U2 ≤ −γ2 ] = Φ (−γ2 ) (3.2)

(iii) P [Yi1 = 1 , Yi2 = 1 | βm1 , ϕ ] = P [U1 ≤ −γ1 , U2 ≤ −γ2 ]

where

γi =
βi√

1 + ϕ2
i = 1 , 2, (3.3)

and (U1 , U2 )′ is a normal random vector of expectation 0 , the variances of U1 and U2 are equal to 1
and the covariance is given by
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C(U1 , U2 ) = ρ
.
=

ϕ2

1 + ϕ2
. (3.4)

Clearly, γ1 and γ2 are identified in view of the two first equations. Now, the third equation may be
written as a function of ρ , namely,

H ( ρ )
.
= P [U1 ≤ −γ1 , U2 ≤ −γ2 ] (3.5)

= E [P (U2 ≤ −γ2 | U1 ) 11{U1≤−γ1 } ] = E

[
Φ

(
−γ2 − ρU1√

1 − ρ2

)
11{U1 ≤−γ1 }

]

It may be shown that the derivative of H ( ρ ) is strictly positive. Hence, H ( ρ ) is strictly increasing on
( 0 , 1 ) in ρ , and therefore ϕ is identified. The same is true for β1 and β2 and the normal ogive (or,
probit) model is then identified. We will give a general proof of this result in Section 5.

4 Identifiability and Measurability Arguments

The identification analysis of Section 3 is essentially based on the closed-form of equations (3.1) and
(3.2). Unfortunately, this algebraic fact is in general not possible: take, for instance, the link function F
as a logistic distribution and G as a standard normal distribution. Therefore, the identification strategy
used in the previous section is not directly applied for general distribution functions F and G.

Nevertheless, the identification analysis of the normal ogive (or, probit) Rasch model provides insight
to formalize an identification strategy based on measurability arguments. As a matter of fact, the main
argument consists in establishing an injective relationship between the structural parameter (βm1 , ϕ) and
the identified parameter θ = (p12···m, p12···m−1,m̄, . . . , p1̄,2̄,...,m̄). As shown in Section 2, the identi-
fied parameter θ corresponds to the basic probabilities which describe the sample process. Therefore,
the identifiability of the structural parameters follows after writing them as a measurable function of
sampling probabilities. In what follows, we formalize these notions in terms of σ-fields; for readers
unfamiliar with σ-field notions, we refer to Ellis and Junker (1997), particularly their appendix.

4.1 Sufficient parameter

Identifiability can be defined in terms of parametric minimal sufficiency; see, among others, Kadane
(1974), Picci (1977) and Oulhaj and Mouchart (2003). We need, therefore, to review the concept of
sufficiency and minimal sufficiency at the parameter level, already introduced in Barankin (1961) and
in Barankin et al. (1980). A natural way to introduce the definition of sufficient parameter is by taking
advantage of the symmetric role between parameters and observations in a Bayesian experiment (see,
Florens et al., 1990, chapter 1). Thus, the definition of sufficient parameter is equivalent to the definition
of sufficient statistic by replacing “observations” by “parameters”. In a sampling context, a statistic
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S(X) is a sufficient statistics for θ if the conditional distribution of the sample X given S(X) does not
depend on θ. When θ is a random variable such a definition is equivalent to X ⊥⊥ θ | S(X).

Definition 4.1 A function g(θ) of the parameter θ is a sufficient parameter for X if the conditional
distribution of the sample X given θ is the same that the distribution of the sample X given g(θ), that is,

X ⊥⊥ θ | g(θ). (4.1)

Condition (4.1) implies that the distribution of X is completely determined by g(θ), or in other words, θ
is redundant once g(θ) is known. By the symmetry of a conditional independence relation, it can also be
concluded that g(θ) is a sufficient parameter if the conditional distribution of the redundant part θ given
the sufficient parameter g(θ) is not updated by the sample, i.e., p(θ | X, g(θ)) = p(θ | g(θ)).

Example 1 For the statistical model (1.5), the parameter (a0,Σ) is a sufficient parameter.

Example 2 For the structural Rasch model (1.3), the parameter (βm1 , ϕ) describe the sampling process
generating the pattern responses Y i’s, that is, it is the corresponding sufficient parameter.

4.2 Minimal sufficiency and Bayesian identification

We might ask whether one sufficient parameter still contains redundant information or whether one
sufficient parameter is any better than another. To see this point, consider a sufficient parameter φ

.
= g(θ),

i.e. X ⊥⊥ θ | φ. Note that the sample X does not increase the prior knowledge about θ given φ, or in other
words, part of the prior information on θ is not revised by the sample. Therefore, the parametrization θ is
not “identified” by the data X . This situation can be avoided if θ is a minimal sufficient parameter, that
is, if θ is a sufficient parameter and it is a function of any other sufficient parameter. In this way, if the
parametrization of a statistical model is based on a minimal sufficient parameter, then the parametrization
does not contain redundant information. These considerations motivate the following definition (see
Florens and Rolin, 1984):

Definition 4.2 A sufficient parameter θ∗ = h(θ) is said to be Bayesian identified or b-identified by X , if
θ∗ is a minimal sufficient parameter for X .

In other words, a parameter is said to be b-identified if it corresponds to the greatest possible param-
eter reduction for which the prior information is updated by the sample. Consequently, a b-identified
parameter fully characterizes the learning process underlying a Bayesian model.

Since the posterior distribution of a non-identified parameter can always be computed, some Bayesian
statisticians suggest that “unidentifiability cause no real difficulties in the Bayesian approach” (Lindley,
1971) and, therefore, that the inference can be based on such parameters. This perspective is followed,
among others, by Leamer (1978), Poirier (1998), Gelfand and Sahu (1999), Ghosh et al. (2000) and
Gustafson (2005). Nevertheless, as can be concluded from Definition 4.2, when a parameter is not iden-
tified, part of the prior information is not revised by the observations. Thus, if the parametrization of a
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statistical model is the minimal sufficient one, the parametrization does not contain redundant informa-
tion.

Remark 1 When both the parameter space and the sample space are Borel spaces, it is possible to
demonstrate that if a parameter θ is identified in a sampling sense, i.e., if the mapping θ 7−→ P θ is
injective, then it is b-identified for all prior distributions on the parameters; for details and proofs, see
Florens et al. (1985) and Florens et al. (1990, chapter 4).

4.3 Measurability with respect to sampling expectations

The minimal sufficient parameter of a Bayesian model is always almost surely a function of a countable
number of sampling expectations; for a proof, see Appendix A. Therefore, a sufficient parameter θ is
b-identified if there exists a measurable function h such that

θ = h {E[f(X) | θ]} , (4.2)

for some measurable function f . However, to state this type of equalities is rather difficult, in particular
in context of structural Rasch models. Fortunately, equality (4.2) can equivalently be stated in terms
of measurability relationships: it is equivalent to say that θ is measurable with respect to the σ-field
generated by the sampling expectations; see Neveu (1964, Proposition II.2.5). Denoting the relationship
“g is measurable with respect to a σ-field F ” as “g ∈ F ”, equality (4.2) is equivalent to

θ ∈ σ{E[f | θ] : f ∈ σ(X)+}, (4.3)

where σ(Z) is the σ-field generated by a random variable Z and σ(Z)+ denotes the set of positive
measurable functions of Z . Taking into account that the σ-field generated by θ, σ(θ), is the smallest
σ-field which makes θ a measurable function, then (4.3) is equivalent to

σ(θ) ⊂ σ{E[f | θ] : f ∈ σ(X)+}. (4.4)

Since σ{E[f | θ] : f ∈ σ(X)+} ⊂ σ(θ) by definition of conditional expectation, the relation (4.4)
is equivalent to σ(θ) = σ{E[f | θ] : f ∈ σ(X)+}. Heuristically, a σ-field σ(Z) corresponds to
the set of events that may be described in terms of that random variable (see, e.g., Florens et al., 1993;
and San Martı́n et al., 2006). Therefore, relation (4.4) means that θ is b-identified if the information
represented by it can be recovered from the information represented by the sampling expectations. Let
us emphasize that the concept of b-identifiability is a genuinely Bayesian concept since it depends on the
prior distribution through the prior null sets (i.e., the events the prior probability of which is equal to 0
or to 1); see Appendix A.

Example 3 Continuing with the Example 1, the minimal sufficient parameter, which we denote by A∗,
is given by σ{E(f | a0,Σ) : f ∈ B+

�
2}, where B+

�
2 denotes the set of positive functions measurable

with respect to the Borel σ-field of R2. Let X1 = (X11, X12)′; it follows that
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σ11 + 1 = E(X11 | a0,Σ) ∈ A∗, σ22 + a2
0 = E(X12 | a0,Σ) ∈ A∗,

σ12 + a0 = E(X11 X12 | a0,Σ) ∈ A∗.

Therefore, (σ11, σ22 +a2
0, σ12 +a0) is the minimal sufficient parameter forX1; or, equivalently, it is the

parameter b-identified by the observation X 1. This characterization is valid for all the prior distributions
on (a0,Σ) equivalent to the Lebesgue measure.

5 Identifiability of the Structural Rasch Model for an arbitrary F and G

In the Rasch model defined by the structural hypotheses H1 to H6 (see Section 1.2), consider that the
distribution G is known up to a scale parameter ϕ –see equation (1.2)–, and that F is a strictly increasing
distribution function. The structural parameter (βm1 , ϕ) is b-identified by Y i if and only if

(βm1 , ϕ) ∈ σ{E(f | βm1 , ϕ) : f ∈ σ(Y i)
+}, (5.1)

where σ(Y i) is the σ-field generated by Y i. Note that σ{E(f | βm1 , ϕ) : f ∈ σ(Y i)
+} corresponds to

the minimal sufficient parameter for Y i.

5.1 Main argument

Let S be the σ-field generated by the scale parameter ϕ, and Bj be the σ-field generated by βj . In order
to prove condition (5.1), let us suppose that the following two relations are true:

βj ∈ S ∨ σ{E(f | βm1 , ϕ) : f ∈ σ(Yij)
+} ⊂ S ∨ σ{E(f | βm1 , ϕ) : f ∈ σ(Y i)

+}; (5.2)

and

ϕ ∈ σ{E(f | βm1 , ϕ) : f ∈ (σ(Yi1) ∨ σ(Yi2) )+} ⊂ σ{E(f | βm1 , ϕ) : f ∈ σ(Y i)
+}, (5.3)

where F1 ∨ F2 denotes the smallest σ-field generated by F1 ∪ F2. The subsets relationships in (5.2)
and (5.3) are always true since σ(Yij) ⊂ σ(Y i) and σ(Yi1) ∨ σ(Yi2) ⊂ σ(Y i), respectively. Relation
(5.2) means that the difficulty parameter βj is a measurable function of both the scale parameter ϕ and
sampling expectations of the formE[f(Yij) | βj , ϕ], with f a Borel function defined on {0, 1}. Similarly,
relation (5.3) tell us that the scale parameter ϕ is a measurable function of sampling expectations of the
form E[h(Yi1, Yi2) | βm1 , ϕ], with h a Borel function defined on {0, 1}2 .

Now, relation (5.2) implies that

σ(βm1 )
.
= Bm1 ⊂ S ∨ σ{E(f | βm1 , ϕ) : f ∈ σ(Y i)

+};
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whereas relation (5.3) implies that

S ⊂ σ{E(f | βm1 , ϕ) : f ∈ σ(Y i)
+}.

Therefore,

Bm1 ∨ S ⊂ S ∨ σ{E(f | βm1 , ϕ) : f ∈ σ(Y i)
+} = σ{E(f | βm1 , ϕ) : f ∈ σ(Y i)

+},

namely relation (5.1). In what follows, the basic relationships (5.2) and (5.3) are proved.

5.2 Proof of relation 5.2

For all 1 ≤ j ≤ m define

αj
.
= P [Yij = 1 | βm1 , ϕ ] =

∫
�
F (ϕx − βj )G ( dx ), (5.4)

which is measurable with respect to σ{E(f | βm1 , ϕ) : f ∈ σ(Yij)
+}. Clearly, the function

p (ϕ , β )
.
=

∫
�
F (ϕx − β )G ( dx )

is a continuous function in (ϕ , β ) ∈ R+
0 × R that is strictly decreasing in β ∈ R since F is a

strictly increasing continuous function. Therefore, if we define

p (ϕ , α )
.
= inf{β : p (ϕ , β ) < α },

it is clear that

p [ϕ , p (ϕ , β ) ] = β. (5.5)

Using (5.4), this implies that, ∀ 1 ≤ j ≤ m ,

βj = p (σ , αj ) ∈ S ∨ σ{E(f | βm1 , ϕ) : f ∈ σ(Yij)
+},

namely relation (5.2).

Remark 2 As mentioned in Section 4, the role of the identification analysis of the structural normal ogive
Rasch model is to provide insights to generalize the proof for general structural Rasch-type models. It is,
therefore, relevant to emphasize that, in the context of the structural normal ogive Rasch model, relation
(5.2) corresponds to condition (3.3).
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5.3 Proof of relation 5.3

By making the following regularity assumptions on F and G , namely F (x )
.
=
∫ x
−∞ f ( y ) dy, where

f is a continuous strictly positive function on R, and that, ∀ ϕ ∈ R+
0 and ∀ β ∈ R, there exist ε > 0

and η > 0 , such that

∫
�

max(|x|, 1) sup
|ϕ′−ϕ|≤ε

sup
|β′−β|≤η

f (ϕ′ x− β′ )G ( dx ) < ∞, (5.6)

it is not difficult to prove that p (ϕ , β ) is continuously differentiable under the integral sign on R+
0 × R

and, therefore, that

(i) D2 p (ϕ , β )
.
=

∂

∂ β
p (ϕ , β ) = −

∫
�
f (ϕx − β )G ( dx )

(5.7)

(ii) D1 p (ϕ , β )
.
=

∂

∂ ϕ
p (ϕ , β ) =

∫
�
x f (ϕx − β )G ( dx ).

Therefore, p (ϕ , α ) is also continuously differentiable on R+
0 × ( 0 , 1 ) and from (5.5), we obtain that

(i) 1 =
∂

∂ β
p [ϕ , p (ϕ , β ) ]

= D2 p [ϕ , p (ϕ , β ) ]×D2 p (ϕ , β )

(5.8)

(ii) 0 =
∂

∂ ϕ
p [ϕ , p (ϕ , β ) ]

= D1 p [ϕ , p (ϕ , β ) ] + D2 p [ϕ , p (ϕ , β ) ] × D1 p (ϕ , β ),

where D1 p (ϕ , α )
.
=

∂

∂ ϕ
p (ϕ , α ) and D2 p (ϕ , α )

.
=

∂

∂ α
p (ϕ , α ). Combining (5.7) and (5.8),

we obtain that

(i) D2 p (ϕ , α ) =
1

D2 p [ϕ , p (ϕ , α ) ]
= − 1∫

� f [ϕx − p (ϕ , α ) ]G ( dx )

(5.9)

(ii) D1 p (ϕ , α ) = − D1 p [ϕ , p (ϕ , α ) ]

D2 p [ϕ , p (ϕ , α ) ]
=

∫
� x f [ϕx − p (ϕ , α ) ]G ( dx )∫

� f [ϕx − p (ϕ , α ) ]G ( dx )

.
= Eϕ ,α (X ),

11



where

Pϕ ,α [X ∈ dx ]
.
= Gϕ ,α ( dx )

.
=

f [ϕx − p (ϕ , α ) ]G ( dx )∫
� f [ϕx − p (ϕ , α ) ]G ( dx )

. (5.10)

Let us remark that the fact of writing D1 p(ϕ, α) as an expectation with respect to the probability distri-
bution (5.10) is relevant to prove the basic relation (5.3).

Now, let us consider

α12
.
= P [Yi1 = 1 , Yi2 = 1 | βm1 , ϕ ]

=

∫
�
F (ϕx − β1 )F (ϕx − β2 )G ( dx );

this can be written as a function of ϕ , namely

α12
.
= q (ϕ , α1 , α2 )

=

∫
�
F [ϕx − p (ϕ , α1 ) ]F (ϕx − p (ϕ , α2 ) ]G ( dx ).

By definition, α12 is measurable with respect to σ{E(f | βm1 , ϕ) : f ∈ (σ(Yi1) ∨ σ(Yi2) )+}. Further-
more, α1 and α2 are also measurable with respect to this σ-field. Therefore, if we show that the function
α12 = q(ϕ, α1, α2) is a strictly increasing continuous function of ϕ , we obtain that

ϕ = q (α12 , α1 , α2 ) ∈ σ{E(f | βm1 , ϕ) : f ∈ (σ(Yi1) ∨ σ(Yi2) )+}, (5.11)

namely relation (5.3), where

q (α , α1 , α2 ) = inf {ϕ : q (ϕ , α1 , α2 ) > α }.

Remark 3 The monotonicity of α12 as a function of ϕ leads to obtain relation (5.3). In the context of
the structural normal ogive Rasch model, this corresponds to the monotonicity of the function H(ρ); see
equation (3.6).

Thanks to assumption (5.6) and the fact that F ≤ 1 , it can be shown that α12 is continuously
differentiable under the integral sign in ϕ , β1 and β2 , and therefore the function q (ϕ , α1 , α2 )
is continuously differentiable under the integral sign with respect to ϕ . It remains to show that this
derivative is strictly positive. Now, using (5.9.ii), we obtain that

∂

∂ ϕ
F [ϕx − p (ϕ , α ) ] = (x − Eϕ , α (X ) )f [ϕx − p (ϕ , α ) ]. (5.12)

12



But

∫
�

(x − Eϕ ,α1 (X ) ) f [ϕx − p (ϕ , α1 ) ]F [ϕx − p (ϕ , α2 ) ]G ( dx )

=

∫
�
f [ϕx − p (ϕ , α1 ) ]G ( dx ) × Cϕ , α1 {X , F [ϕX − p (ϕ , α2 ) ] }

Now, since F [ϕx − p (ϕ , α2 ) ] is a strictly increasing function of x , the covariance between X and
F [ϕX − p (ϕ , α2 ) ] (with respect to Gϕ , α1 ) is strictly positive (if X is not degenerate). Further-
more,

∫
� f [ϕx − p (ϕ , α1 ) ]G ( dx ) is clearly strictly positive. The two terms of the derivative of

q (ϕ , α1 , α2 ) are, therefore, strictly positive.

5.4 Main result

Summarizing, we obtain the following theorem:

Theorem 5.1 Consider the family of Rasch-type models specified by the structural hypotheses H1 to H6
introduced in Section 1.2. The difficulty parameters βm1 and the scale parameter ϕ of the distribution
generating the abilities are b-identified by Y 1 if the following two conditions hold:

(i) The link function F defining the ICC is a strictly increasing continuous function with a continuous
strictly positive density function.

(ii) The distribution functions F and G satisfy the regularity condition (5.6).

In particular, the structural Normal Ogive Rasch model and the structural Rasch model (i.e., when F
corresponds to the logistic distribution and G = Φ) satisfy the hypotheses of this theorem.

Remark 4 The identification analysis developed in this section can also be considered as a classical
analysis in the sense that the the main arguments reduce to establish measurability relationships between
the structural parameters and the identified ones. This requires to endow the parameter space with a σ-
field in such a way that the sampling probabilities become transitions probabilities; for details, see
Caillot and Martin (1972), Florens et al. (1985) and Florens et al. (1990, section 4.6.2). Consequently,
Theorem 5.1 is also valid in a sampling set-up.

The identification restrictions established in Theorem 5.1 does not exclude constant difficulty (i.e.,
βj = β for all j = 1, . . . ,m) as it is the case for the identification restriction of model (1.1), the
parameter space of which is, for instance, given by

(θn1 , β
m
1 ) ∈ Rn × 〈11m〉⊥; (5.13)
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see Section 1.1. Nevertheless, if the distribution G generating the random effects is known up to both a
location parameter µ and a scale parameter ϕ, then it is necessary to impose an identification restriction
on the difficulty parameters, which leads to exclude constant difficulties. As a matter of fact, let Gµ,ϕ be
a probability distribution given by

P [θi ≤ x | ϕ, µ] = G([−∞, x− µ
ϕ

]).

Relation (5.4) is, therefore, rewritten as

αj
.
= P [Yij = 1 | βm1 , ϕ, µ ] =

∫
�
F (ϕx + µ − βj )G ( dx ) ∀ 1 ≤ j ≤ m.

Since F is a strictly increasing continuous function, we have, for all 1 ≤ j ≤ m,

βj − µ ∈ S ∨ σ{E(f | βm1 , ϕ) : f ∈ σ(Yij)
+} ⊂ S ∨ σ{E(f | βm1 , ϕ) : f ∈ σ(Y i)

+}.

Using the same arguments developed in Sections 5.1, 5.2 and 5.3, it can be concluded that (β1 −
µ, . . . , βm − µ, ϕ) is b-identified by Y 1. Therefore, under a restriction of the form a′βm1 = 0 such
that a′11m 6= 0, the structural parameter (βm1 , µ, ϕ) is b-identified by Y 1. In this case, the parameter
space of the structural Rasch model with a distribution Gµ,ϕ known up to both a location parameter µ
and a scale parameter ϕ is, for instance, given by

(βm1 , µ, ϕ) ∈ 〈11m〉⊥ × R × R+, (5.14)

which, although different from the parameter space (5.13), also excludes constant difficulties.

Theorem 5.1 also provides some insight at the model construction level. As a matter of fact, the strict
monotonicity of the continuous distribution function F defining the ICC is a necessary identification con-
dition. As well known, this condition is typically assumed in nonparametric IRT specifications (see, e.g.,
Ellis and Junker, 1997; and Sijtsma and Molenaar, 2002), and when the Rasch model is constructively
deduced (see, e.g., Fischer, 1995). Nevertheless, when modeling guessing responses, non-monotonic
ICCs have been suggested as a “desirable feature”, the idea being that “examinees with sufficiently low
θ can only guess randomly, examinees with higher θ may be misinformed and may do less well than a
random guess” (Lord, 1983, pp. 479-480); see also Mislevy and Bock (1982); for a summary of different
positions, see Hutchinson (1991, sections 2.7.2 and 2.10.7). These models fail to be identified either if
we consider the conditional model given the abilities, or the statistical model obtained after integrating
out the abilities.

6 Estimability of the Structural Rasch-Type Models

Let θ be a parameter to be estimated. Since the objective of Bayesian inference is the transformation of
“prior to posterior” distributions, Bayesian estimators are typically based on the posterior distribution.
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The posterior expectation of a parameter of interest f(θ) always converges almost surely to E[f(θ) |
X∞1 ], the posterior expectation of θ given the infinite sequence of observations, provided that f(θ) be an
integrable function; this is due to the Martingale Theorem. By analogy to sampling consistency, it seems
natural to say that the Bayesian estimator E[f(θ) | Xn

1 ] is consistent if its limit is a.s. equal to f(θ), that
is, E[f(θ) | X∞1 ] = f(θ) a.s.; here Xn

1 = (X1, . . . , Xn). These facts motivate the following definition:

Definition 6.1 Let f be an integrable function. The parameter f(θ) is said to be estimable if the poste-
rior expectation E[f(θ) | Xn

1 ] converges a.s. to f(θ).

Using the basic properties of the conditional expectation, the condition E[f(θ) | X∞1 ] = f(θ) a.s. is
equivalent to say that f(θ) is a.s. a function of X∞1 . This means that the infinite sequence of observa-
tions X∞1 contains the relevant information necessary to construct estimable parameters. This condition
provides a Bayesian interpretation about the meaning of a parameter.

In an iid process, the estimability (or, Bayesian consistency) of identified parameters follow from the
following general theorem:

Theorem 6.1 Let {Xn : n ∈ N} be an iid process conditionally on θ. Then the corresponding b-
identified parameter θ∗ is consistently estimated by E(θ∗ | Xn

1 ).

For a proof, see Florens and Rolin (1984) and Florens et al. (1990, chapter 9).

As pointed out in Section 1.2, hypotheses H1, H2 and H5 imply that the sequence {Y i : i ∈ N}
forms an iid process conditionally on (βm1 , ϕ). Therefore, as a corollary of Theorem 6.1, we obtain the
following proposition:

Proposition 6.1 Consider the family of Rasch-type models specified by the structural hypotheses H1 to
H6 introduced in Section 1.2, such that the identification restrictions established in Theorem 5.1 are
satisfied. It follows that

lim
n→∞

E[h(βm1 , ϕ) | Y n
1 ] = h(βm1 , ϕ) a.s.

for all integrable function h, where Y n
1 = (Y 1, . . . ,Y n).

This proposition establishes not only that both each difficulty parameter βj’s and the scale parameter ϕ of
the distribution generating the abilities are estimable, but also that all the functions of any combination
of them are consistently estimated. Furthermore, it can be proved that in an iid process the minimal
sufficient statistics corresponding to the asymptotic experiment (Y ∞1 | βm1 , ϕ) is a.s. equal to a function
of the b-identified parameter (βm1 , ϕ); for details, see Florens et al. (1990, chapter 9). Therefore, in
the asymptotic Bayesian experiment characterized by the random variables (βm1 , ϕ,Y

∞
1 ), Bayesian and

sampling estimates provide the same information. This result is in agreement with Kiefer and Wolfowitz
(1956) and Pfanzagl (1970).

15



7 Concluding Remarks

As it is well known, the identification problem was couched in the context of structural modeling, be-
coming a “necessary part of the specification problem” (Koopmans and Reiersøl, 1950, p. 169). The
basic idea of structural modeling is to offer a substantive explanation of an observed phenomenon. Tech-
nically, the probability describing the observed variables is obtained from a hierarchical model after
integrating out the marginal model generating the latent variables. The hierarchical structure is expected
to be motivated by substantive considerations. Thus, the concern underlying identifiability is to know
if the observed phenomenon is generated by only one structure; otherwise, “the first explanation of the
data is not the only one” (Clifford, 1982); see also Hurwicz (1950), Clifford (1982a) and Manski (1995).

Rasch models, and by extension the GLMMs, constitute a relevant example of structural modeling.
It is, therefore, surprising that the related literature does not pay a careful attention to the identification
problem. Taking into account the discussion of Section 1.3, four statements need to be evaluated: (i)
the identifiability of the structural Rasch model (1.3) follows from the identifiability of the conditional
model (1.1); (ii) the identifiability of the structural Rasch model can be solved via the scaling of the
posterior ability distribution; (iii) from a Bayesian point of view, hierarchical models are unidentified;
(iv) the identifiability of the parameter scale ϕ of the distribution G generating the random effects is not
well established. These statements can actually be verified once we pay attention to the binary character
of the identification concept, namely which parameter we intend to identify by which observation; see
Definition 4.2. By so doing, the following conclusions were established in this paper:

1. The identifiability of the Rasch model at the conditional level (1.1) is different from the identifia-
bility of the structural Rasch model (1.3). This is due to the fact that the corresponding parameter
spaces are different. Therefore, the identifiability of structural Rasch models should formally be
stated, which is done in Theorem 5.1. This qualifies statement (i) above.

2. The identification analysis is mainly focused on the sampling distributions up to prior null sets.
This qualifies statement (ii) above.

3. Rasch-type models are an example of hierarchical models or GLMMs. We have proved that these
models are identified from a Bayesian point of view. This qualifies statement (iii) above.

4. The scale parameter ϕ of the distribution G is identified by one observation since it is a measurable
function of sampling expectations; see the basic relation (5.3). This qualifies statement (iv) above.

The identification problem analyzed in this paper need to be studied in the context of 2PL and 3PL
models with random effects. Moreover, taking into account that the distribution G generating the abilities
is a parameter of interest, it is relevant to know if G has an empirical, that is, if G is identified in the
context of a structural Rasch model. In a next paper these authors intend to address this problem.
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Appendix

A A characterization of the minimal sufficient parameter

Let us consider a Bayesian experiment E = (A × Y, A ∨ Y, Π), where (A,A) (resp., (Y,Y)) is the
parameter space (resp., the sample space), and Π is a unique probability measure defined on A∨Y . Let
ΣE be the class of sufficient parameters B ⊂ A for the process generating Y , namely ΣE = {B ⊂ A :
Y ⊥⊥ A | B}. It follows that A ∈ ΣE , hence ΣE 6= ∅. Therefore, if B1, B2 ∈ ΣE , then B1 ∩ B2 ∈ ΣE ,
where Bj (j = 1, 2) denotes the completion Bj = Bj ∨ {E ∈ A : µ(E)2 = µ(E)} and µ denotes
the restriction of Π on A (that is, the prior distribution). Consequently, the minimal sufficient parameter
Bmin ∈ ΣE always exists and it is given by

Bmin =
⋂

B∈ΣE

B.

Using the properties of the measurable completion (see Florens et al., 1990, chapter 2), it can be verified
that Bmin = Bmin. Thus, the minimal sufficient parameter Bmin contains all the null sets of the parameter
space (A,A) defined with respect to the prior probability µ.

The minimal sufficient parameter Bmin can be expressed in more operational terms, namely as a σ-
field generated by sampling expectations. Indeed, by definition of a σ-field generated by a function, the
σ-field generated by every version of the sampling expectations, namely σ{E(f | A) : f ∈ Y+}, is
the smallest sub-σ-field of A that makes the sampling expectations measurable; here Y+ is the set of
Y-measurable positive functions. Then:

1. By construction of Bmin, it follows that A ⊥⊥ Y | Bmin. Since the conditional independence prop-
erty corresponds to a measurability condition (see Theorem 2.2.6 in Florens et al., 1990), it follows
that E (f | A) ∈ B+

min ∀ f ∈ Y+. Therefore, σ{E(f | A) : f ∈ Y+} ⊂ Bmin.

2. Similarly, E(f | A) ∈ σ{E(f | A) : f ∈ Y+}, so A ⊥⊥ Y | σ{E(f | A) : f ∈ Y+}. Hence,
Bmin ⊂ σ{E(f | A) : f ∈ Y+}.

Thus, the minimal sufficient parameter Bmin is equal to σ{E(f | A) : f ∈ Y+}. Therefore, b-
identifiability is a genuinely Bayesian concept since it depends on the prior distribution through the
prior-null sets. For details and properties, see Florens et al. (1990, chapter 4).
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