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Abstract

Recently, Cramer, Kamps and Schenk (2002) established conditions under which a family of joint
distributions of two independent statistics is complete, and related their result with a previous one of
Landers and Rogge (1976). We first propose, within a sampling theory framework, a modification of
Cramer, Kamps and Schenk’s (2002) generalization of Landers and Rogge’s (1976) theorem, paying
a particular attention to the concept of completeness of a function of the parameters. Next, after
reminding the concept of completeness in a Bayesian framework, we discuss its robustness with
respect to the prior specification and its relationship with sampling completeness. It is then shown
that Landers and Rogge’s (1976) theorem can be extended, and in a sense generalized, to a Bayesian
framework. A Bayesian version of Cramer, Kamps and Schenk (2002)’s theorem is also provided.
These results are exemplified in both a normal and a discrete Bayesian experiment.
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1 Introduction

The classical papers of Basu (1955, 1959, 1964) and of Lehmann and Scheffé (1955a, 1955b) have shown
the importance of the completeness of sufficient statistics in the theory of best unbiased estimation and
test procedures. These issues receive a substantial amount of attention in graduate level textbooks as
testified, e.g., in Lehmann and Casella (1998). Recently, Cramer, Kamps and Schenk (2002) established
conditions under which a family of joint distributions of two independent statistics is complete. These
authors not only show the practical relevance of their results through a set of interesting examples, but
also relate their result with a previous one of Landers and Rogge (1976).

Broadly speaking, Landers and Rogge (1976) state that the product of two independent complete statis-
tics is also complete in the product measure obtained by considering a variation-free parametrization of
the product family (or, equivalently, a cartesian product of the corresponding parameter spaces). Cramer,
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Kamps and Schenk’s (2002) generalization ensures a similar result without requiring the variation-free
parametrization between the corresponding families used to define the product family. This general-
ization relies however on a concept not well defined in a pure sampling theory approach, namely the
completeness of a function of a parameter.

Taking into account that completeness of a function of a parameter can be well defined in a Bayesian
framework, the concern of this paper is to analyze differences and connections between sampling and
Bayesian completeness in the context of Landers and Rogge’s (1976) type theorems. More specifically,
within a sampling theory framework, we first propose a modification of Cramer, Kamps and Schenk’s
(2002) generalization of Landers and Rogge’s (1976) theorem; this is developed in Section 2.

Next, after reminding the concept of completeness in a Bayesian framework , we discuss in Section 3
its robustness with respect to the prior specification and its relationship with sampling completeness. It is
then shown, in Section 4, that Landers and Rogge’s (1976) theorem can be extended, and in a sense gene-
ralized, to a Bayesian framework. A Bayesian version of Cramer, Kamps and Schenk’s (2002) theorem
is provided in Section 5. In each one of sections 4 and 5, the results are exemplified in both a normal and
discrete Bayesian experiment.

This paper is completed with some concluding remarks. The proof of the main results are gathered in
the Appendix.

2 Completeness with respect to a parameter, not with respect to a function
of a parameter

In a sampling theory framework, completeness is defined with respect to a statistical experiment E . A
statistical experiment is an extension of the concept of a probability space in the sense that a unique
probability measure is replaced by a family of probability measures, namely:

E = {(S,S), P θ : θ ∈ Θ} (2.1)

where (S,S) is a measurable space, the sample space, and {P θ : θ ∈ Θ} is a family of probability
measures on the sample space indexed by a parameter θ belonging to a parameter space Θ; see, e.g.,
Barra (1981) or McCullagh (2002). Note that Θ might be a Euclidean as well as a functional space, as is
the case in non-parametric models, or a product of both as in semi-parametric models.

In the context of experiment (2.1), both complete statistics and a complete family of probability distri-
butions are defined as follows (see, e.g., Barndorff-Nielsen, 1978; or Barra, 1981):

Definition 2.1 A statistics T ⊂ S is p-complete (1 ≤ p ≤ ∞) if the following implication holds:

∀ t ∈
⋂
θ∈Θ

Lp(S, T , P θ)
∫

t dP θ = 0 ∀ θ ∈ Θ =⇒ t = 0 P θ-a.s. ∀ θ ∈ Θ,

where Lp(S, T , P θ) is the linear space of T -measurable functions that are p-integrable w.r.t. P θ. The
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family {P θ : θ ∈ Θ} is said to be p-complete if the statistics S is p-complete. When p = ∞, an
∞-complete statistics is also called a boundedly complete statistics.

Remark 2.1 In this paper we rely on the usual convention of identifying a statistic T : (S,S) → (U,U)
and its generated σ-field T = T−1(U) ≡ σ(T ) ⊂ S; see, e.g., Barra (1981), Basu and Pereira (1983),
Florens, Mouchart and Rolin (1990) or San Martı́n, Mouchart and Rolin (2005).

2.1 Joint completeness under non variation-free parametrization

The set-up considered by Cramer, Kamps and Schenk (2002) is the following: Let T1 and T2 be inde-
pendent real-valued statistics, and let the induced families of distributions be given by

C0. {P θ1,θ2

T1
}(θ1,θ2)∈Θ1×Θ2

, and {P θ2
T2
}θ2∈Θ2 ,

that is, the distribution of T1 may depend on both parameters, whereas the distribution of T2 depends
on the parameter θ2 only. Theorem 2 of Cramer, Kamps and Schenk (2002) establishes that the family
of joint distributions {P θ1,θ2

T1,T2
}(θ1,θ2)∈Θ1×Θ2

is complete for (θ1, θ2) ∈ Θ1 × Θ2 under the following
conditions:

C1. T1 is complete for θ1.

C2. T2 is complete for θ2.

C3. (∀ θ1 ∈ Θ1) P θ1,θ2

T1
∼ P θ1,θ2

′

T1
∀ θ2, θ2

′ ∈ Θ2; that is, for all θ1 ∈ Θ1, P θ1,θ2
′

T1
and P θ1,θ2

T1
have the

same null sets.

In their introduction, Cramer, Kamps and Schenk (2002) recall the definition of a complete statistics,
identical to Definition 2.1 above for the case p = 1, but fail to define the concept of completeness
relative to a function of the parameters, such as f(θ1, θ2) = θ1, although use of such concept is made
in condition C1. To the best of these authors’ knowledge such a concept has not been introduced in the
statistical literature following a sampling theory approach. We accordingly examine the role of condition
C1 in Cramer, Kamps and Schenk (2002) result. Let us consider the 1-completeness of T1 relative to its
family of probability distributions indexed by θ = (θ1, θ2) ∈ Θ1 ×Θ2, namely

∀ t1 ∈
⋂

θ∈Θ1×Θ2

L1(R,BR, P θ
T1

)

∫
t1 dP θ

T1
= 0 ∀ θ ∈ Θ1 ×Θ2 =⇒ t1 = 0 P θ

T1
-a.s. ∀ θ ∈ Θ1 ×Θ2.

(2.2)

Reviewing Cramer, Kamps and Schenk (2002) proof of Theorem 2 leads to the conclusion that condition
(2.2) with θ = (θ1, θ2) ∈ Θ1×Θ2 is actually used rather than the undefined condition C1. As a matter of
fact, let g ∈ L1(R2,BR2 , P θ1,θ2

T1,T2
) such that Eθ1,θ2 [g(T1, T2)] = 0 for all (θ1, θ2) ∈ Θ1×Θ2, where Eθ[·]
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denotes the expectation taken w.r.t. P θ. Using the same arguments as in Cramer, Kamps and Schenk
(2002), the independence of T1 and T2 implies that Eθ1,θ2 [g(T1, T2)] = 0 is equivalent to:∫

R
Hθ2(t1)dP θ1,θ2

T1
(t1) = 0 ∀ (θ1, θ2) ∈ Θ1 ×Θ2, (2.3)

where

Hθ2(t1) =
∫

R
g(t1, t2) dP θ2

T2
(t2) ∀ θ2 ∈ Θ2. (2.4)

Since g ∈ L1(R2,BR2 , P θ1,θ2

T1,T2
) implies that Hθ2(·) ∈ L1(R,B, P θ1,θ2

T1
) ∀ (θ1, θ2) ∈ Θ1×Θ2, conditions

(2.2) and (2.3) imply that:

Hθ2 = 0 P θ1,θ2

T1
-a.s ∀ (θ1, θ2) ∈ Θ1 ×Θ2. (2.5)

Using C3, (2.5) implies that∫
R

g(t1, t2) dP θ2
T2

(t2) = 0 P θ1,θ2
′

T1
-a.s ∀ θ1 ∈ Θ1 ∀ θ2, θ2

′ ∈ Θ2.

Note that the variation-free property between θ1 and θ2 in the family of distributions {P θ1,θ2

T1
: (θ1, θ2) ∈

Θ1 × Θ2} (i.e. the cartesian product structure for the parameter space; see Barndorff-Nielsen, 1978)
ensures the validity of the preceding implications. The rest of the proof is as published in Cramer,
Kamps and Schenk (2002).

These arguments suggest to restate Theorem 2 in Cramer, Kamps and Schenk (2002) as follows:

Theorem 2.1 Let T1 and T2 be independent statistics satisfying conditions C0, C2, C3 and (2.2). Then
the family of joint distributions {P θ1,θ2

T1,T2
}(θ1,θ2)∈Θ1×Θ2

is complete for (θ1, θ2) ∈ Θ1 ×Θ2.

It should be stressed that the free variation property regards θ1 and θ2 but not the parameters character-
izing the distributions of T1 and T2, namely (θ1, θ2) and θ2, respectively.

Example 1 The use of condition (2.2) in examples related with Theorem 2 in Cramer, Kamps and
Schenk (2002) can be illustrated by means of the first part of their Example 4. Let T1 be a mixture
of a uniform distribution on (−θ2, 0) and a one-parameter exponential distribution on (θ1,∞), with
Θ1 = Θ2 = (0,∞). The corresponding density function is accordingly given by:

fθ1,θ2

T1
(t) =

1
2

1
θ2

1I [−θ2,0](t) +
1
2
e−(t1−θ1)1I [θ1,∞)(t), t ∈ R, (θ1, θ2) ∈ Θ1 ×Θ2.

Cramer, Kamps and Schnek’s argument actually shows that T1 is complete for (θ1, θ2) ∈ Θ1×Θ2. As a
matter of fact, we need to prove that for all measurable functions g such that
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∫
R

g(t)fθ1,θ2

T1
(t) dt = 0 ∀ (θ1, θ2) ∈ Θ1 ×Θ2 (2.6)

it follows that g = 0 P θ1,θ2

T1
-a.s. ∀ (θ1, θ2) ∈ Θ1 ×Θ2. Condition (2.6) implies that

1
2

∫ ∞

θ1

(c(θ2) + g(t)) e−(t−θ1) dt = 0 ∀ θ1 ∈ Θ1 ∀ θ2 ∈ Θ2 (2.7)

where c(θ2) = 1
θ2

∫ 0
−θ2

g(t) dt. By taking an arbitrary but fixed θ2 ∈ Θ2, equality (2.7) is valid for all
θ1 ∈ Θ1. Therefore, by the completeness of {Exp (θ1, 1) : θ1 ∈ Θ1}, (2.7) implies that g(t) = −c(θ2)
for almost all t. Using (2.6), it follows that c(θ2) = 0 for all θ2 ∈ Θ2, hence g = 0 with respect to the
Lebesgue measure.

2.2 Joint completeness under variation-free parametrization

Landers and Rogge (1976) state a different result on the completeness of the family of joint distributions
{P θ

T1,T2
}θ∈Θ of two independent and complete statistics T1 and T2, namely:

Theorem 2.2 (Landers and Rogge, 1976) Let T1 and T2 be independent statistics such that the induced
families of distributions have the form {P θi

Ti
}θi∈Θi

i = 1, 2, respectively, and satisfy conditions C1 and

C2 above. Then the family of joint distributions {P θ1,θ2

T1,T2
}(θ1,θ2)∈Θ1×Θ2

is complete for θ = (θ1, θ2) ∈
Θ1 ×Θ2.

Let us compare this last theorem with Theorem 2.1. As a matter of fact, Theorem 2.2 actually ensures
that an arbitrary family of independent and complete statistics is also complete in the product measure
obtained by considering a variation-free parametrization of the product family, namely (θ1, θ2) ∈ Θ1 ×
Θ2. Theorem 2.1 is different in nature and ensures that two independent and complete statistics are also
complete in the product measure without requiring a variation-free parametrization of the corresponding
families used to define the product family (i.e. the parameters of the induced family of T1 include the
parameters of the induced family of T2), but under an additional condition of homogeneity of supports
(i.e. condition C3).

Let us conclude this section by mentioning the converse of Theorems 2.1 and 2.2, the proofs of which
are straightforward:

Theorem 2.3

I. (Converse of Landers and Rogge, 1976) Let T1 and T2 be two independent statistics such that
the induced families of distributions have the form {P θi

Ti
}θi∈Θi

i = 1, 2. If the independent

product family {P θ1,θ2

T1,T2
}(θ1,θ2)∈Θ1×Θ2

is complete for θ = (θ1, θ2) ∈ Θ1 × Θ2, then each family

{P θi
Ti
}θi∈Θi

i = 1, 2 satisfy conditions C1 and C2 above, respectively.
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II. (Converse of Theorem 2.1) Let T1 and T2 be two independent statistics satisfying condition C0
above. If the product family {P θ1,θ2

T1,T2
}(θ1,θ2)∈Θ1×Θ2

is complete for θ = (θ1, θ2) ∈ Θ1 × Θ2,

then each families {P θ1,θ2

T1
}(θ1,θ2)∈Θ1×Θ2

and {P θ2
T2
}θ2∈Θ2 satisfy conditions C2 and (2.2) above,

respectively.

3 Bayesian Completeness

In section 2 we saw that the main result of Cramer, Kamps and Schenk (2002) does not require a (new)
concept of completeness relative to a function of parameters because its proof only uses the standard
concept of completeness. An issue is to understand why such a concept has not been developed in the
sampling theory approach in spite of the fact that many (or most) statistical models involve nuisance pa-
rameters, making of the parameter of interest a non injective function of the parameter θ. The reason for
that state of affair may be ascribed to the fact that sampling theory does not provide a general procedure
for eliminating nuisance parameters (see, e.g., Basu, 1977; or Berti, Fattorini and Rigo, 2000), at variance
from Bayesian theory where nuisance parameters are integrated out by means of the (conditional) prior
distribution. In order to make this paper reasonably self-contained, let us review the Bayesian concept of
completeness with some of its relevant properties.

3.1 A Bayesian experiment

A Bayesian experiment is defined as a unique probability measure Q defined on the product space “ob-
servations × parameters”. More specifically, let us consider the statistical experiment given by (2.1). A
probability measure Q on Θ × S is constructed by endowing the parameter space Θ with a probability
measure m on (Θ,A), where the σ-fieldA of subsets of Θ makes P θ(X) measurable for all X ∈ S, and
by extending to A⊗ S (in a unique way) the function Q defined on A× S as follows:

Q(E ×X) =
∫

E
P θ(X) d m E ∈ A, X ∈ S. (3.1)

The measure constructed from (3.1) is denoted as Q = m⊗PA. Thus, a Bayesian experiment is defined
by the following probability space:

E = (Θ× S,A ∨ S, Q = m⊗ PA). (3.2)

Remark 3.1 In this section, we shall systematically identify the sub-σ-field B ⊂ A (resp., T ⊂ S) with
the sub-σ-field of the corresponding cylinders B×S (resp. Θ×T ). Thus, in (3.2), we identify the product
A⊗ S with A ∨ S, the σ-field generated by (A× S) ∪ (Θ× S).

By construction P θ in (3.1) becomes a transition of probability representing a regular version of PA,
the restriction to S of the conditional probability Q given A, and this is so for whatever probability m
on (Θ,A). Moreover, the so-called prior probability m corresponds to the marginal probability of Q on
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(Θ,A), namely m(E) = Q(E × S) for E ∈ A. Similarly, the marginal probability P on the sample
space (S,S) given by P (X) = Q(Θ×X) for X ∈ S is called the predictive probability.

Besides the decomposition Q = m⊗PA, the probability Q is decomposed into a marginal probability
P on (S,S) and, under the usual hypotheses, a regular conditional probability given S, represented
by a transition denoted as mS : this is the so-called posterior distribution. When Q is decomposed as
Q = m ⊗ PA = P ⊗ mS , the Bayesian experiment (3.2) is said regular. For more details, see, e.g.,
Martin, Petit and Littaye (1973) and Florens, Mouchart and Rolin (1990, chapter 1).

3.2 Bayesian completeness and its relation with sampling completeness

In the context of the Bayesian experiment (3.2), the sub-σ-fields T of S correspond to statistics, whereas
the sub-σ-fields B of A correspond to functions of parameters; see Remark 2.1. The completeness of a
statistic with respect to a parameter is defined, both in the global and in the conditional case, as follows.

Definition 3.1 A statistic T ⊂ S is p-complete (1 ≤ p ≤ ∞) with respect to a parameter B ⊂ A if the
following implication holds:

∀ t ∈ Lp(Θ× S, T , QB∨T ) E(t | B) = 0 =⇒ t = 0 mB-a.s. (3.3)

where mB is the trace, on B, of the prior probability m .

Definition 3.2 Let M⊂ A∨ S be a sub-σ-field. Conditionally on M, a statistics T ⊂ S is p-complete
(1 ≤ p ≤ ∞) w.r.t. a parameter B ⊂ A if T ∨M is p-complete (1 ≤ p ≤ ∞) w.r.t. B ∨M.

Definitions 3.1 and 3.2 hold for all statistics T ⊂ S and for all sub-parameter B ⊂ A. For properties
and details, see Basu and Pereira (1983), Mouchart and Rolin (1984) or Florens, Mouchart and Rolin
(1990, chapter 5). Note that, in Definition 3.2, the σ-fieldM can be either a parameter, either a statistics
or a function of both.

The relationships between Bayesian completeness and sampling completeness essentially depend on
the regularity of the prior specification. We say that the prior probability m is regular for the experiment
(2.1) if for a bounded S-measurable function s such that Eθ(s) = 0 m-a.s., it follows that Eθ(s) = 0 for
all θ ∈ Θ. Two relevant cases of regularity are the following:

(i) if Θ is countably, the prior probability m is regular if it gives positive mass to each point of Θ;

(ii) if Θ is a topological space, and the sampling probabilities are such that P θ is continuous on Θ,
then a prior probability m is regular if it gives positive probability to each open measurable subset
of Θ.

The following theorem relates Bayesian and sampling completeness; for a proof, see Florens, Mouchart
and Rolin (1990, section 5.5.4).
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Theorem 3.1 Let us consider the statistical experiment (2.1) and the Bayesian experiment (3.2). A
statistics p-complete with respect to A in the context of the Bayesian experiment characterized by Q =
m ⊗ PA, is sampling complete if m is a regular prior probability. Conversely, a statistics sampling
p-complete with respect to the experiment (2.1), is p-complete with respect to the Bayesian experiment
characterized by Q = m⊗ PA for all regular prior probability m.

3.3 Robustness with respect to the prior specification

The reader may like to have the attention drawn to the fact that, in (3.3), the completeness of a statistic
T with respect to a parameter B depends on the prior specification in two ways. Let us decompose m on
A with respect to B ⊂ A, namely m = mB ⊗mB, where mB is a conditional probability of m given B.
If we assume the existence of a regular version of mB, we have first that mB enters in the construction
of E(t | B) because

E(t | B) =
∫

t dPB, where PB(X) =
∫

Θ
PA(X) dmB X ∈ S.

Next mB determines the null sets describing the almost-sure equality E(t | B) = 0. Therefore, this
completeness is robust to a modification of the prior distribution leaving mB unchanged and leaving the
collection of null sets of mB unaffected. Thus, when B = A, the validity of E(t | A) = 0 depends only
on the null sets of m and condition (3.3) is accordingly robust to any equivalent modification of the prior
specification. So we have given a simple proof of the following theorem:

Theorem 3.2 If T is p-complete (1 ≤ p ≤ ∞) w.r.t. A in the Bayesian experiment characterized by
Q = m⊗ PA, then T is also p-complete w.r.t. A for all Q′ = m′ ⊗ PA once m ∼ m′.

4 A Bayesian version of Landers and Rogge’s Theorem

The object of this section is to extend Landers and Rogge (1976) theorem to a Bayesian framework. The
tool of conditional independence is needed. Although well known, let us briefly remind its definition: let
(Ω,F , P ) be a probability space and Fi, with i = 1, 2, 3, be sub-σ-fields of F . Then F1 ⊥⊥ F2 | F3 if
and only if E[f | F2 ∨ F3] = E[f | F3] for all F1-measurable and bounded function f or, equivalently,
E[f1f2 | F3] = E[f1 | F3] ·E[f2 | F3] for all Fi-measurable and bounded function fi with i = 1, 2. For
details, proofs and properties, see, e.g., Martin, Petit and Littaye (1973), Dawid (1980), Döhler (1980),
Mouchart and Rolin (1984), or Florens, Mouchart and Rolin (1990, chapter 2).

4.1 Main result

After stating the Bayesian version of Landers and Rogge’s (1976) theorem, we comment on the hypothe-
ses and on the conclusions. The proof is given in Appendix A.1.

8



Theorem 4.1 Let (Ti,Bi) with i = 1, 2 be two pairs of statistics and parameters such that

(i) T1 ⊥⊥ B2 | B1 (ii) T2 ⊥⊥ B1 | B2 (4.1)

I. (Bayesian version of Landers and Rogge, 1976) If Ti is p-complete (1 ≤ p ≤ ∞) w.r.t. Bi with
i = 1, 2, and if

(i) T1 ⊥⊥ T2 | B1 ∨ B2, (ii) B1 ⊥⊥ B2, (4.2)

then T1 ∨ T2 is p-complete w.r.t. B1 ∨ B2.

II. (Converse version) If T1 ∨ T2 is p-complete (1 ≤ p ≤ ∞) w.r.t. B1 ∨ B2, then Ti is p-complete
(1 ≤ p ≤ ∞) w.r.t. Bi with i = 1, 2.

Let us comment the hypotheses of this theorem:

• The two conditions in (4.1) describe the basic framework: the distributions of two statistics, T1 and
T2, are characterized by specific parameters, B1 and B2. More precisely, condition (4.1.i) means, by
definition of conditional independence, that for all T1-measurable and bounded function t, E[t | B1 ∨
B2] = E[t | B1]. That is, the process generating T1 given B1 ∨ B2 depends on B1 only. In a Bayesian
framework, it is said that B1 is a sufficient parameter for T1 in the sense that B1 is “sufficient” to describe
the sampling process generating T1. In other words, the statistics T1 brings information on B1 only in
the sense that, conditionally on B1, the statistics brings no further information on B2. In a pure sampling
theory approach, this condition corresponds to say that the distribution of the statistics T1 depends on
the parameter B1 only. Similarly, condition (4.1.ii) means that B2 is a sufficient parameter for T2. These
conditions, therefore, implicitly define the parameters B1 and B2 as sufficient parameters for T1 and T2,
respectively.

• The condition (4.2.i) is the Bayesian counterpart of the property of sampling independence between T1

and T2.

• The condition (4.2.ii) of prior independence between B1 and B2 is the Bayesian counterpart of the
property of variation-free between the corresponding parameter spaces in a pure sampling approach.
This condition is needed to establish the implication; if not, in particular if B1 = B2 ≡ B, the theorem
is not any more valid because B cannot be independent of itself, except in the trivial case of known
parameter.

Example 2 As a simple example of the non validity of Theorem 4.1.I when B1 = B2, consider two
independent samples from a N (θ, 1) and a regular prior distribution m giving positive probability to
each open measurable subset of R. It follows that both X̄1 and X̄2 are complete w.r.t. θ. Nevertheless,
X̄1 − X̄2 ∈ σ(X̄1, X̄2) is not complete w.r.t. θ since E[X̄1 − X̄2 | θ] = 0.

• It should be noticed that the two conditions in (4.1) along with the two conditions (4.2) jointly imply
the following conditions:
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(i) T1 ⊥⊥ B2 | T2, (ii) T2 ⊥⊥ B1 | T1, (iii) T1 ⊥⊥ T2

(iv) B1 ⊥⊥ B2 | T1 ∨ T2 (v) T1 ⊥⊥ B2, (vi) T2 ⊥⊥ B1.
(4.3)

Condition (4.3.i) means that T2 is a sufficient statistics for B2 (after integrating out B1), whereas con-
dition (4.3.ii) means that T1 is a sufficient statistics for B1 (after integrating out B2). Condition (4.3.iii)
means that T1 and T2 are predictively independent (i.e. mutually independent after integrating out both
parameters), whereas condition (4.3.iv) means that B1 and B2 are a posteriori mutually independent. Fi-
nally, condition (4.3.v) (resp. condition (4.3.vi)) means that T1 and B2 (resp. T2 and B1) are mutually
ancillary.

• The first part of the Theorem 4.1 is a direct Bayesian counterpart of Landers and Rogge (1976) where
the variation-free condition becomes a condition of prior independence. Notice that in the converse part,
the Bayesian version does not require neither the sampling independence nor the prior independence, at
variance from the sampling version in Theorem 2.3.I.

4.2 Application to a normal conjugate Bayesian experiment

As pointed out in section 3.2, when the sampling transition is fixed, Bayesian and sampling completeness
are roughly equivalent provided that the prior distribution is regular. Therefore, in the case of regular
prior probabilities, the examples used to illustrate Landers and Rogge’s (1976) theorem can automati-
cally be used to illustrate Theorem 4.1.I. The concern of this section is, therefore, to illustrate Theorem
4.1 when the prior probability distribution is not regular. Therefore, the forthcoming examples pay a
particular attention to different forms of singularity in the variance matrices; details and examples on the
connection between null sets and singular covariance matrices can be found in San Martı́n, Mouchart
and Rolin (2005).

Let X = (X1
′, X2

′, X3
′)′ ∈ Rp1+p2+p3 be a random vector. Let V (· | ·) and C(·, · | ·) denote the

conditional variance and the conditional covariance operators, respectively, and define

Ker [C(X2, X1 | X3)] = Im [C(X1, X2 | X3)]⊥ = {a ∈ Rp1 : C(X2, a
′X1 | X3) = 0 a.s.}

Ker [V (X1 | X3)] = Im [V (X1 | X3)]⊥ = {a ∈ Rp1 : V (a′X1 | X3) = 0 a.s.}.

The following proposition characterizes the p-completeness of X1 with respect to X2 conditionally on
X3 whether the covariance matrix is singular or not; for a proof, see Appendix A.2.

Proposition 4.1 Let (X1
′, X2

′ | X3
′)′ ∼ Np1+p2(µ(X3),Σ(X3)). The following conditions are X3-a.s.

equivalent:

(i) Conditionally on X3, X1 is p-complete with respect to X2 for all p ∈ [1,∞].

(ii) r[C(X2, X1 | X3)] = r[V (X1 | X3)].

10



(iii) Ker [C(X2, X1 | X3)] = Ker [V (X1 | X3)].

(iv) Ker [C(X2, X1 | X3)] ⊂ Ker [V (X1 | X2, X3)].

Before using this proposition to illustrate Theorem 4.1, let us remark that a necessary condition to
ensure the p-completeness of X1 w.r.t X2 conditionally on X3 is that the dimension of X1 be at most
(X3-a.s.) equal to r[V (X1 | X3)]. When Σ(X3) is a definite positive matrix, a sufficient and necessary
condition to ensure the p-completeness relationship is that p1 ≤ p2 X3-a.s. In particular, take X1 as
the observed information T , X2 as the parameter Θ and X3 as an a.s. constant, such that the variance-
covariance matrix of (T ′,Θ′)′ be a definite positive matrix. Then, T is p-complete with respect to Θ
if the number of parameters is at most equal to the number of observations. Note that in this case, the
prior distribution on Θ is regular since r[V (Θ)] = p2, and accordingly this p-complete relationship is
also valid in a pure sampling framework. When the variance-covariance matrix of (T ′,Θ′)′ is singular,
a necessary condition to ensure the p-completeness of T w.r.t. Θ is that the number of parameters be at
most equal to r[V (T )].

Example 3 In order to illustrate Theorem 4.1, let T = (T1
′, T2

′)′ ∈ Rp1+p2 be a manifest variable
analyzed under a random effect Θ = (Θ1

′,Θ2
′)′ ∈ Rq1+q2 . For the sake of simplicity, we only consider,

without making this explicit, joint distributions of (T,Θ) conditional on their expectation, assumedly
equal to 0, and on their variance-covariance matrix, namely (T ′,Θ′)′ ∼ Np+q(0,Σ) with p = p1 + p2

and q = q1 + q2, and we shall allow explicitly the possibility of their variance-covariance matrix Σ being
singular.

(i) Example of Theorem 4.1.I: Assume that T1 is p-complete w.r.t. Θ1 and that T2 is p-complete w.r.t.
Θ2. Using Proposition 4.1, these conditions are equivalent to

(i) r[V (T1)] = r[C(Θ1, T1)], (ii) r[V (T2)] = r[C(Θ2, T2)]. (4.4)

Equation (4.3.iii) means that

V (T ) = diag[V (T1), V (T2)],

where diag (A,B) is a block-diagonal matrix, with the matrices A and B as the corresponding blocks.
Similarly, from (4.3.v-vi) it follows that C[Θ, T ] = diag [C(Θ1, T1), C(Θ2, T2)]. Taking into account
this block-diagonal structure, condition (4.4) straightforwardly implies that r[V (T )] = r[C(Θ, T )],
which is equivalent to the p-completeness of T w.r.t. Θ. Let us remark that the singularity of V (Θ)
would mean a linear relation between some elements of the random vector Θ but does not play any role
in the conclusion, at variance from a result similar to the sampling one . Finally, according to Theorem
3.2, the p-completeness of T w.r.t. Θ is still valid if the prior distributions on the Θi’s are replaced by
equivalent ones.

(ii) Example of Theorem 4.1.II: Assume that the pair (Ti,Θi) with i = 1, 2 satisfies condition (4.1) above.
First, note that condition (4.1.i) is equivalent to C(T1,Θ2 | Θ1) = 0. Moreover, from the normality it
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follows that E(Θ2 | Θ1) = C(Θ1,Θ2) [V (Θ1)]+ Θ1 and E(T1 | Θ1) = C(T1,Θ1) [V (Θ1)]+ Θ1, where
A+ denotes the Moore-Penrose inverse of A (for details, see Marsaglia, 1964). Since A+AA+ = A+, it
follows that:

C(Θ2, T1) = E[C(Θ2, T1 | Θ1)) + C[E(Θ2 | Θ1), E(T1 | Θ1)]
= C(Θ2,Θ1) [V (Θ1)]+ C(Θ1, T1) ≡ Q21 C(Θ1, T1).

Similarly, C(Θ1, T2) = C(Θ1,Θ2) [V (Θ2)]+ C(Θ2, T2) ≡ R12 C(Θ2, T2). Therefore,

C(Θ, T ) =

 C(Θ1, T1) R12 C(Θ2, T2)

Q21 C(Θ1, T1) C(Θ2, T2)



=

 Iq1 R12

Q21 Iq2

  C(Θ1, T1) 0

0 C(Θ2, T2)

 .

Thus, if T is p-complete w.r.t. Θ, then from Proposition 4.1 it follows that

Im[V (T )] = Im
[

C(T1,Θ1)
0

]
⊕ Im

[
0

C(T2,Θ2)

]
,

where Im(A) denotes the range space generated by the columns of matrix A. It follows that r[V (Ti)] =
r[C(Θi, Ti)] with i = 1, 2, that is, Ti is p-complete w.r.t. Θi with i = 1, 2. As mentioned in Theorem
4.1.II, the conclusion does not depend on the sampling independence between T1 and T2, neither on the
prior independence between Θ1 and Θ2.

4.3 Application to a discrete Bayesian experiment

Let us characterize Bayesian completeness in the discrete case. Let (M,M, P ) be a probability space,
Nr for r = 1, 2, 3 be finite sets, and Xr : M −→ Nr with r = 1, 2, 3 be random variables. We define

K = {k ∈ N3 : P [X3 = k] > 0},

N
(k)
1 = {i ∈ N1 : P [X1 = i | X3 = k] > 0} for k ∈ K,

N
(k)
2 = {j ∈ N2 : P [X2 = j | X3 = k] > 0} for k ∈ K,

and, for k ∈ K, the |N (k)
1 | × |N (k)

2 | matrix P(k) with the elements

pij|k ≡ (P(k))ij = P [X1 = i, X2 = j | X3 = k] for (i, j) ∈ N
(k)
1 ×N

(k)
2 .

12



The following proposition characterizes Bayesian completeness; for a proof, see Appendix A.3.

Proposition 4.2 For p > 0, X1 is p-complete with respect to X2 conditionally on X3 if and only if
(∀ k ∈ K) P(k)′ is an injective linear transformation, i.e. r(P(k)) = |N (k)

1 |.

Two comments deserve this proposition:

1. If X1 is p-complete with respect to X2 conditionally on X3, then a dimension restriction between
X1 and X2 follows, namely that, for each k ∈ K, r(P(k)) = |N (k)

1 | ≤ |N (k)
2 |.

2. For each k ∈ K, P(k) is a bijective linear transformation (hence |N (k)
1 | = |N (k)

2 |) if and only if
X1 is p-complete with respect to X2 conditionally on X3 and X2 is p-complete with respect to X1

conditionally on X3.

Example 4 Let (T1, T2, θ1, θ2) ∈ {0, 1}4. Without restrictions, this Bayesian experiment has 24 − 1 =
15 parameters. Let W be the 4× 4 matrix of joint probabilities, namely

W = [ωijkl], where ωijkl = P [T1 = i, T2 = j, θ1 = k, θ2 = l].

(i) Example of Theorem 4.1.I: Under conditions (4.1) and (4.2), the joint probability distribution is
characterized as follows:

ωijkl = P [T1 = i | θ1 = k]P [θ1 = k] P [T2 = j | θ2 = l]P [θ2 = l]
≡ pi|k mk qj|l nl.

Therefore, we have 6 parameters: p0|0, p0|1, q0|0, q0|1,m0 and n0. By Proposition 4.2, the p-completeness
of T1 with respect to θ1 requires to analyze the rank of the 2 × 2 matrix with entries of the form rik ≡
P [T1 = i, θ1 = k] = pi|kmk, namely[

r00 r01

r10 r11

]
=

[
p0|0 p0|1
p1|0 p1|1

] [
m0 0
0 m1

]
. (4.5)

Similarly, the p-completeness of T2 with respect to θ2 requires to analyze the rank of the 2 × 2 matrix
with entries of the form sik ≡ P [T2 = j, θ2 = l] = qj|lnl, namely[

s00 s01

s10 s11

]
=

[
q0|0 q0|1
q1|0 q1|1

] [
n0 0
0 n1

]
. (4.6)

Finally, the p-completeness of (T1, T2) with respect to (θ1, θ2) requires to analyze the rank of the 4 × 4
matrix with entries of the form ωijkl = P [T1 = i, T2 = j, θ1 = k, θ2 = l] = pi|k mk qj|l nl. It can be
easily verified that
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W =


ω0000 ω0001 ω0010 ω0011

ω0100 ω0101 ω0110 ω0111

ω1000 ω1001 ω1010 ω1011

ω1100 ω1101 ω1110 ω1111

 =
[

p0|0m0 p0|1m1

p1|0m0 p1|1m1

]
⊗

[
q0|0n0 q0|1n1

q1|0n0 q1|1n1

]

=
[

r00 r01

r10 r11

]
⊗

[
s00 s01

s10 s11

]
, (4.7)

which we write as W = R⊗S. This equality shows in particular the role of both the prior independence
of θ1 and θ2 and the sampling independence of T1 and T2.

Now, T1 is p-complete with respect to θ1 if r(R) = 2 which is, by (4.5), equivalent to both m0m1 > 0
and P [T1 = 0 | θ1 = 0] 6= P [T1 = 0 | θ1 = 1]. Similarly, T2 is p-complete with respect to θ2 if
r(S) = 2, which is, by (4.6), equivalent to both n0n1 > 0 and P [T2 = 0 | θ2 = 0] 6= P [T2 = 0 | θ2 =
1]. Finally, equality (4.7) shows that r(R) = 2 and r(S) = 2 jointly imply that r(W ) = 4, which is
equivalent to the p-completeness of (T1, T2) by (θ1, θ2).

(ii) Example of Theorem 4.1.II: Assume that the pair (Ti, θi) with i = 1, 2 satisfies condition (4.1) above.
Let us assume that (T1, T2) is p-complete with respect to (θ1, θ2). By Proposition 4.2, this is equivalent
to say that r(W ) = 4. Taking into account condition (4.1.ii), T2 is p-complete w.r.t. θ2 if the 2×2 matrix
with entries P [T2 = j, θ2 = l] is a full rank one. This last matrix can equivalently be rewritten as

(
ω·0·0 ω·0·1
ω·1·0 ω·1·1

)
=

(
ω0000 + ω1000 + ω0010 + ω1010 ω0001 + ω0011 + ω1001 + ω1011

ω0100 + ω0110 + ω1100 + ω1110 ω0101 + ω0111 + ω1101 + ω1111

)
.

Assume that the rank of this matrix is equal to 1. Therefore, there exists a constant c 6= 0 such that

ω0000 + ω1000 + ω0010 + ω1010 = c [ω0001 + ω0011 + ω1001 + ω1011]

ω0100 + ω0110 + ω1100 + ω1110 = c [ω0101 + ω0111 + ω1101 + ω1111].

These conditions imply that the firth and third rows of W are linearly dependent, and that the second and
fourth rows of W are also linearly dependent. This contradicts the fact that r(W ) = 4. Therefore, T2 is
p-complete with respect to θ2.

Similarly, it can be concluded that the p-completeness of (T1, T2) with respect to (θ1, θ2) implies the p-
completeness of T1 with respect to θ1. As mentioned in Theorem 4.1.II, the conclusion does not depend
on the sampling independence between T1 and T2, neither on the prior independence between θ1 and θ2.
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5 Bayesian completeness of independent experiments without prior inde-
pendence

The motivation of this section is to obtain a Bayesian version of Theorem 2.1 and to provide an illustra-
tion of this result. Except condition C3, the other hypotheses underlying this theorem have an obvious
Bayesian counterpart. Note first that a converse Bayesian version of Theorem 2.1, in the same spirit as
Theorem 4.1.II, is trivially obtained by formally replacing B1 by B1 ∨ B2 in conditions (4.1), in which
case condition (4.1.i) becomes trivial.

Theorem 5.1 (Bayesian Converse version of Theorem 2.1) Let (Ti,Bi) with i = 1, 2 be two pairs of
statistics and parameters such that T2 ⊥⊥ B1 | B2. If T1 ∨ T2 is p-complete (1 ≤ p ≤ ∞) w.r.t. B1 ∨ B2,
then T1 is p-complete (1 ≤ p ≤ ∞) w.r.t. B1 ∨ B2 and T2 is p-complete (1 ≤ p ≤ ∞) w.r.t. B2

Let us now consider the following question: which conditions should be added to condition (4.1.ii) and
the two conditions (4.2) to ensure that T1 ∨ T2 is p-complete (1 ≤ p ≤ ∞) w.r.t. B1 ∨B2? Note first that
conditions (4.1.ii) and (4.2.i) are jointly equivalent to

T2 ⊥⊥ (B1 ∨ T1) | B2, (5.1)

which trivially implies that T1 ∨ T2 ⊥⊥ B1 | T1 ∨ B2. Therefore,

∀ t ∈ Lp(Θ× S, T1 ∨ T2, QB∨T1∨T2) E(t | B1 ∨ B2 ∨ T1) = E(t | B2 ∨ T1) (5.2)

and so

E(t | B1 ∨ B2) = E[E(t | B2 ∨ T1) | B1 ∨ B2] (5.3)

Thus, (3.3) would be satisfied under a stronger condition than the p-completeness of T1 w.r.t. B1 ∨ B2,
namely that:

Conditionally on B2, T1 is p-complete w.r.t. B1. (5.4)

The next step is therefore to remark that the implication

E(t | B2 ∨ T1) = 0 ⇒ t = 0 (5.5)

is valid under the condition

Conditionally on T1, T2 is p-complete w.r.t. B2. (5.6)

Summarizing, we have proved the following Bayesian version of Theorem 2.1:
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Theorem 5.2 Let T1 and T2 be two independent statistics such that B1 ∨ B2 is sufficient for T1 and B2

is sufficient for T2. If conditionally on B2, T1 is p-complete w.r.t. B1 and if conditionally on T1, T2 is
p-complete w.r.t. B2 , then T1 ∨ T2 is p-complete w.r.t. B1 ∨ B2

Example 5 Let us illustrate Theorem 5.2 in the same discrete case as in Example 4. Let (T1, T2, θ1, θ2) ∈
{0, 1}4. Under both the sampling independence of T1 and T2, and the sufficiency of θ2 for T2 (i.e., con-
dition (4.1.ii)), the joint probability distribution is characterized as follows:

ωijkl ≡ P (T1 = i, T2 = j, θ1 = k, θ2 = l) (5.7)

= P (T1 = i | θ1 = k, θ2 = l) P (T2 = j | θ2 = l) P (θ1 = k, θ2 = l)
≡ pi|kl qj|l mkl.

Therefore, the Bayesian experiment is characterized by 9 parameters, namely

p0|00, p0|10, p0|01, p0|11; q0|0, q0|1;m00, m01, m10.

Let us make explicit the matrices necessary to characterize the p-completeness relationships used in
Theorem 5.2:

1. The p-completeness of T1 w.r.t. θ1 conditionally on θ2 requires to analyze the rank of the 2 × 2
matrices with entries of the form

fik|l ≡ P [T1 = i, θ1 = k | θ2 = l] =
1

P [θ2 = l]
· P [T1 = i | θ1 = k, θ2 = l] · P [θ1 = k, θ2 = l]

=
1

m+l
· pi|kl ·mkl,

where m+l = m1l + m2l. Therefore,

F (0) =
(

f00|0 f01|0
f10|0 f11|0

)
=

1
(m00 + m10)

(
p0|00 p0|10
p1|00 p1|10

) (
m00 0
0 m10

)
.

Similarly,

F (1) =
(

f00|1 f01|1
f10|1 f11|1

)
=

1
(m01 + m11)

(
p0|01 p0|11
p1|01 p1|11

) (
m01 0
0 m11

)
.

Therefore, T1 is p-complete w.r.t. θ1 conditionally on θ2, i.e. the matrices F (0) and F (1) have full rank,
if and only if

S1. mkl > 0 for all (k, l) ∈ {0, 1}2;
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S2. (p0|00, p1|00) and (p0|10, p1|10) are linearly independent;

S3. (p0|01, p1|01) and (p0|11, p1|11) are linearly independent.

2. The p-completeness of T2 w.r.t. θ2 conditionally on T1 requires to analyze the rank of the 2 × 2
matrices with entries of the form gjl|i ≡ P [T2 = j, θ2 = l | T1 = i]. Noticing that T1 ⊥⊥ T2 | θ1, θ2 and
θ1 ⊥⊥ T2 | θ2 jointly imply that T1 ⊥⊥ T2 | θ2, it follows that

gjl|i =
qj|l P [T1 = i | θ2 = l]P [θ2 = l]

P [T1 = i]

=
qj|l

[
pi|0lm0l + pi|1lm1l

]
pi|00m00 + pi|01m01 + pi|10m10 + pi|11m11

≡
qj|l

[
pi|0lm0l + pi|1lm1l

]
ci

.

Therefore, the p-completeness of T2 w.r.t. θ2 conditionally on T1 relies on the following two matrices:

(
g00|0 g01|0
g10|0 g11|0

)
= c0

(
q0|0 q0|1
q1|0 q1|1

) (
p0|00 p0|10 0 0

0 0 p0|01 p0|11

) 
m00 0
m10 0
0 m01

0 m11

 ,

and

(
g00|1 g01|1
g10|1 g11|1

)
= c1

(
q0|0 q0|1
q1|0 q1|1

) (
p1|00 p1|10 0 0

0 0 p1|01 p1|11

) 
m00 0
m10 0
0 m01

0 m11

 ,

which we respectively denote as

G(0) = c0QP0M, G(1) = c1QP1M.

Therefore, T2 is p-complete w.r.t. θ2 conditionally on T1, i.e. the matrices G(0) and G(1) have full rank,
if and only if

S4. r(M) = 2; S5. r(P0) = 2;

S6. r(P1) = 2; S7. r(Q) = 2.
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3. The p-completeness of (T1, T2) w.r.t. (θ1, θ2) requires to analyze the rank of W as defined in (5.8). It
can easily be verified that

W =


q0|0 q0|1 0 0
q1|0 q1|1 0 0
0 0 q0|0 q0|1
0 0 q1|0 q1|1




p0|00 0 p0|10 0
0 p0|01 0 p0|11

p1|00 0 p1|10 0
0 p0|01 0 p1|11




m00 0 0 0
m01 0 0

0 0 m10 0
0 0 0 m11



= diag (Q,Q) ·
(

P1

P2

)
E23 · diag (m00,m01,m10,m11),

where

E23 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

It can easily be verified that conditions (S1)–(S7) are sufficient to imply that r(W ) = 4:

1. Condition (S7) ensures that r[diag (Q,Q)] = 4.

2. Condition (S1) ensures that r[diag (m00,m01,m10,m11)] = 4. Note that (S1) is more restrictive
than (S4) in the sense that it implies (S4).

3. Conditions (S2), (S3), (S5) and (S6) ensures that r[P ′
1 P ′

2] = 4.

Let us complete this example pointing out that the implication is valid still in the case of prior indepen-
dence between θ1 and θ2.

6 Concluding Remarks

Basu’s theorems (1955, 1959, 1964) state that a complete statistics does not contain irrelevant infor-
mation. As a matter of fact, completeness is one condition for a sufficient statistic to be minimal and
for an ancillary statistic to be maximal (for details, see Florens, Mouchart and Rolin, 1990, section
5.5). Completeness is also a σ-algebraic concept as it is invariant under changes of coordinates (both
re-parametrization or recoding of the data). When comparing the sampling theory and the Bayesian con-
cepts of completeness, Theorem 3.1 gives a general result of equivalence under a condition of regularity
of the prior distribution when completeness is relative to the full parameter of a statistical model. When
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made relative to a not injective (i.e. not one-to-one) function of the parameters, the sampling theory con-
cept is not different from completeness with respect to a full parameter, as noticed in section 2, equation
(2.2). The situation is however different in a Bayesian framework where completeness with respect to a
not injective function of the parameters depends on the probability measure characterizing the Bayesian
experiment integrated with respect to the prior distribution conditional on the retained parameters.

A deeper comparison between the sampling theory and the Bayesian concepts of completeness may be
obtained through a comparison of their properties in specific cases. This is the object of this paper where
the comparison is made when combining complete statistics. Two properties are of interest: (A) separate
completeness of each of the two statistics T1 and T2; and (B) joint completeness of T1∨T2 in the product
experiment. The following table summarizes such differences and connections under three conditions:
sampling independence of T1 and T2; variation-free between the parameters of both experiments; and
non variation-free between the parameters of both experiment. Let us remind that, in a pure sampling
theory approach, variation-free means that the parameters of each experiment are in a cartesian product,
whereas in a Bayesian theory framework, it means that the parameters of each experiment are a priori
independent.

A ⇒ B B ⇒ A

Sampling set-up
Theorem 2.2,
variation-free,

sampling independence

Theorem 2.3.I,
variation-free

sampling independence
L-R type theorems

Bayesian set-up
Theorem 4.1.I,
variation-free

sampling independence

Theorem 4.1.II,
non variation-free

Sampling set-up
Theorem 2.1

non variation-free,
sampling independence

Theorem 2.3.II,
non variation-free

sampling independence
C-K-S type theorems

Bayesian set-up
Theorem 5.2,

non variation-free
sampling independence

Theorem 5.1,
non variation-free

Here, L-R type theorems means Landers and Rogge’s type theorem, whereas C-K-S type theorems means
Cramer, Kamps and Schneck’s type theorem.

A Appendix

A.1 Proof of Theorem 4.1

Proof of Theorem 4.1 is based on the following general results established in Florens, Mouchart and
Rolin (1990):
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Theorem A.1 Let p ∈ [1,∞] and let X1, X2, X3, X4 be random variables defined on a common proba-
bility space (Ω,M, P ). If X2 ⊥⊥ X4 | X1, X3 then

(i) X1 p-complete w.r.t. X2 conditionally on X3 implies that X1 p-complete w.r.t. X2 conditionally
on (X3, X4) (see Florens, Mouchart, Rolin, 1990, Theorem 5.4.5).

(ii) X2 is p-complete w.r.t. (X1, X4) conditionally on X3 implies that X2 is p-complete w.r.t. X1

conditionally on X3 (see Florens, Mouchart and Rolin, 1990, Theorem 5.4.6).

Proof of I: Conditions (4.1) and (4.2) jointly imply that T2 ⊥⊥ B1 | T1 (see condition (4.3)). This condition
along with the p-completeness of T1 w.r.t. B1 imply, by Theorem A.1.i, that (a) T1 ∨ T2 is p-complete
w.r.t. B1∨T2. Similarly, conditions (4.1.ii) and (4.2.ii) jointly imply that B1 ⊥⊥ B2 | T2; this last condition,
along with the p-completeness of T2 w.r.t. B2, jointly imply that (b) B1∨T2 is p-complete w.r.t. B1∨B2.
Let f ∈ Lp(M, T1 ∨ T2, Q). Since T1 ∨ T2 ⊥⊥ B1 ∨ B2 | B1 ∨ T2 (a property implied by (4.1) and (4.2) ),
it follows that

E(f | B1 ∨ B2) = E[E(f | B1 ∨ T2) | B1 ∨ B2].

If E(f | B1 ∨ B2) = 0, property (b) above implies that E(f | B1 ∨ T2) = 0 since this expectation is
B1 ∨ T2-measurable; and, by property (a) above, f = 0 Q-a.s.

Proof of II: If T1 ∨ T2 is p-complete w.r.t. B1 ∨ B2, then T1 is p-complete w.r.t. B1 ∨ B2 since the set of
T1-measurable functions is contained in the set of (T1 ∨ T2)-measurable functions. This condition along
with (4.1.i) imply, by Theorem A.1.ii, that T1 is p-complete w.r.t. B1.

�

A.2 Proof of Proposition 4.1

By Definition 3.2, X1 is p-complete w.r.t. X2 conditionally on X3 if and only if (X1, X3) is p complete
w.r.t. (X2, X3). Therefore, the proposition need to be proved for X3 = E(X3) a.s. This proof uses the
following lemma:

Lemma A.1 Suppose that (X1
′, X2

′) are normally distributed conditionally on X3 , i.e., (X1
′, X2

′ |
X3

′)′ ∼ Np1+p2(µ(X3),Σ(X3)), then

Ker [V (X1 | X3)] = Ker [V (X1 | X2, X3)] ∩ Ker [C(X2, X1 | X3)] a.s. (A.1)

For a proof, see San Martı́n, Mouchart and Rolin (2005, Lemma 4.1).

(ii) ⇐⇒ (iii) is a consequence of the rank theorem (see Halmos, 1974, Theorem 1, section 50).

(iii) ⇐⇒ (iv) is a consequence of Lemma A.1.
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(i) =⇒ (iii) Let d ∈ Ker[C(X2, X1)]. Then, under normality, it follows that E[f(d′X1) | X2] =
E[f(d′X1)] for all f ∈ Lp(Rp1 ,BRp1 , P ), where BRp1 denotes the Borel sets of Rp1 ; this is equivalent
to

E{f(d′X1)− E[f(d′X1)] | X2} = 0 a.s. ∀ f ∈ Lp(Rp1 ,BRp1 , P ). (A.2)

Since X1 is p-complete w.r.t. X2, equality (A.2) implies that f(d′X1) = E[f(d′X1)] a.s. for all f ∈
Lp(Rp1 ,BRp1 , P ). It follows that d′X1 = c a.s., with c ∈ R, or equivalently, V (d′X1) = 0. Therefore,
Ker[C(X2, X1)] ⊂ Ker[V (X1)]. The other inclusion is a consequence of Lemma A.1.

(iv) =⇒ (i) X1 p-complete w.r.t. X2 is a property depending on the normal distribution of (X1 | X2).
The idea of the proof consists in transforming (X1 | X2) into, say, (Z1 | V1, V2) in such a way that,
conditionally on V2, Z1 p-complete w.r.t. V1 be implied by a completeness argument in the exponential
family. Let, therefore, q2 = r[V (X2)] and X∗

2 = A′
2X2 be a q2-random vector such that r[V (X∗

2 )] = q2

and X∗
2 = X2 a.s. (for a proof, apply San Martı́n, Mouchart and Rolin, 2005, Lemma C.1). It follows

that

1. (X1 | X∗
2 ) ∼ Np1(g + R∗

12X
∗
2 , V (X1 | X∗

2 )), with R∗
12 = C(X1, X

∗
2 )V (X∗

2 )−1;

2. condition (v) is equivalent to condition (v’): Ker[C(X∗
2 , X1)] ⊂ Ker[V (X1 | X∗

2 )]; and

3. the p-completeness of X1 w.r.t. X2 is equivalent to the p-completeness of X1 w.r.t. X∗
2 (since p-

completeness is robust w.r.t. the null sets; see Florens, Mouchart, Rolin, 1990, Proposition 5.4.2).

Let q1 = r[V (X1 | X∗
2 )]; since IRp1 = Im[V (X1 | X∗

2 )]⊕Ker[V (X1 | X∗
2 )], there exist two orthogonal

matrices A1 and C1, with r(A1) = q1 and r(C1) = p1 − q1, such that A1
′C1 = 0, Im[V (X1 |

X∗
2 )] = Im(A1), Ker[V (X1 | X∗

2 )] = Im(C1) and V (A1
′X1 | X∗

2 ) > 0 (for a proof, apply San
Martı́n, Mouchart and Rolin, 2005, Lemma C.1). Let s = r(R∗

12) ≤ min{p1, q2}. The singular value
decomposition of R∗

12 is given by

R∗
12 = A4∆A5

′, Im(R∗
12) = Im(A4), Ker(R∗

12) = Ker(A5
′), (A.3)

where ∆ is a definite positive matrix with r(∆) = s, A4 and A5 are orthonormal matrices with r(A4) =
r(A5) = s; see Eaton (1983, Theorem 1.3). Then, by definition of R∗

12 and C1, condition (v’) is
equivalent to condition Ker(R∗

12
′) ⊂ Im(C1), which in turn implies that q1 ≤ s and Im(A1) ⊂

Im(A4). Therefore we can take A4 = (A1 G1), where G1 is a p1 × (s − q1) matrix, and C1 =
(G1 C4), where C4 is such that Q4 = (A4 C4) be a p1 × p1 orthonormal matrix. Now let

(i) Z = Q4
′X1 = (A1

′, G1
′, C4

′)X1 = (Z1
′, Z2

′, Z3
′)′ ∈ IRq1 × IRs−q1 × IRp1−s,

(ii) V =
(

∆1/2 0
0 I

) (
A5

′

C5
′

)
X∗

2 = (V1
′, V2

′, V3
′)′ ∈ IRq1 × IRs−q1×p2−s,

(A.4)
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where C5 is such that (A5 C5) be a q2 × q2 orthonormal matrix. Then X1 = Z a.s. and X∗
2 = V a.s.

Consequently, the 1-completeness of X1 w.r.t. X∗
2 is equivalent to the 1-completeness of (Z1, Z2, Z3)

w.r.t. (V1, V2,3 ). Moreover, from (A.3) and (A.4.ii), it follows that R∗
12X

∗
2 = R∗

12(A5∆−1/2 C5)V =
(A4 0)V . Thus, since X∗

2 = V a.s., (X1 | V1, V2, V3) ∼ Np1(g + A1V1 + G1V2, V (X1 | X∗
2 )).

But, by using (A.4.i), it follows that Z3 = C4
′g a.s., Z2 = G′

1g + V2 a.s. and (Z1 | V1, V2, V3) ∼
Nq1(A1

′g + V1, V (A1
′X1 | X∗

2 )). These relations imply that

1. (Z1, Z2, Z3) is 1-complete w.r.t. (V1, V2, V3), which is equivalent to the 1-completeness of Z1

w.r.t. (V1, V3) conditionally on V2; and

2. Z1 ⊥⊥ V2 ∨ V3 | V1.

Under this last conditional independence condition, the last 1-strong identification condition becomes
equivalent to the 1-completeness of Z1 w.r.t. V1 conditionally on V2 (see Theorem A.1 (ii) above). Since
V (A1

′X1 | X∗
2 ) > 0, by fixing V2 in the conditional distribution of (Z1 | V1), the proof follows by

using the fact that Z1 is a complete statistics (in L1(Rp1 ,BRp1 , P )) with respect to V1; see Barndorff-
Nielsen (1978, Lemma 8.2). Consequently, condition (v) implies that X1 is 1-complete w.r.t. X2. Since
Lp(Rp1 ,BRp1 , P ) ⊂ L1(Rp1 ,BRp1 , P ), it follows the p-completeness of X1 w.r.t. X2.

�

A.3 Proof of Proposition 4.2

As in the proof of Proposition 4.1, this proposition need to be proved fir X3 = E(X3) a.s. Let

N∗
2 = {j ∈ N2 : P (X2 = j) > 0},

and let the |N1| × |N∗
2 | matrix P1|2 defined as

P1|2 = [ (P [X1 = i | X2 = j])ij ] for (i, j) ∈ N1 ×N∗
2 .

Then, for j ∈ N∗
2 , E[g(X1) | X2 = j] = g′P1|2 ej , where ej is the j-th column of I|N∗

2 |. Then X1 is
p-complete w.r.t. X2 if and only if the following implication follows: g′P1|2 = 0 =⇒ g = 0; that is,
P′

1|2 is an injective linear transformation, or, equivalently, that P∗′ is an injective linear transformation.
�
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BASU, D. (1959). The family of ancillary statistics. Sankhyā 21, 247–256.
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