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Abstract

Coherence is a widely used measure for characterizing linear dependence between two
time series. Classical books on time series analysis present coherence as “the frequency
domain analogue of the autocorrelation function” which lacks intuitive appeal. The first
goal of this paper is to present a more illuminating and yet still precise interpretation of
coherence. Consider a filter whose power transfer function is concentrated on a particular
frequency band Ω. We show that coherence at Ω is equivalent to the correlation between
the two filtered time series. The second goal of this paper is to develop a novel adaptive
statistical procedure for estimating coherence when the time series are non-stationary,
that is, the nature of linear dependence between time series may evolve with time. The
proposed method for estimating local coherence automatically selects, via repeated tests
of homogeneity (in time) of coherence, the optimal width of the time window on which
one computes the estimated local coherence. This approach is point-wise adaptive in the
sense that the width of the optimal interval is allowed to change across time. Under the
locally stationary process framework, we develop a central limit theorem on the Fisher-z
transform of our time-localized band coherence. We apply our method to a pair of highly
dynamic brain waves signals whose coherence is shown evolve during an epileptic seizure.
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1 Introduction

Neuroscientists use electroencephalograms (EEGs) to study the highly complex spatio-

temporal dynamics of brain processes. One important feature of underlying neuronal

activity is that brain regions do not act in isolation. In fact, epileptiform activity and

cognitive processes require synchronous activation of multiple large aggregates of neurons

[see, e.g., Gotman (1987), Duckrow and Spencer (1992) and Ahlfors et al (1999)]. Thus,

it is important to both establish an easily interpretable measure of synchrony between

brain regions and develop an estimation procedure that is consistent. There are other

many interesting and useful ways of analyzing inter-relationships between time series. For

example, Toda and Philipps (1993, 1994) develop Wald tests for Granger causality. In

addition, Dahlhaus and Eichler (2003) and Eichler (2005, 2006) develop graphical models

and the significant contribution of these work is that they allow one to test for directionality

and causality between time series. This approach uses parametric representations like

the multivariate autoregressive models. In this paper we focus on coherence which is a

widely used measure of linear dependence between two time series. We give an intuitive

interpretation to coherence in a locally stationary setting and develop a novel data-adaptive

non-parametric approach to estimating it.

In standard textbooks, coherence is interpreted as “the frequency domain analogue of

the autocorrelation function” (Brillinger, 1981) or as the “correlation between the stochas-

tic increments in the spectral representation” (Brockwell and Davis, 1991). This notion

of coherence does not offer an intuitive interpretation. We now consider the formal defini-

tion of coherence. Let {(X1,t, X2,t), t = 0,±1,±2, . . .} be a bivariate stationary time series

with spectral density matrix f(ω) which is hermitian and whose diagonal elements f11(ω)

and f22(ω) are the auto-spectra and the off-diagonal element f12(ω) is the cross-spectra.

Coherence between X1,t and X2,t is defined to be K(ω) = f12(ω)/
√

f11(ω)f22(ω), whose

form is similar to that of correlation. That is, coherence is the covariance (cross-spectrum)

normalized by the variances (auto-spectra). In this paper, we will present coherence from
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Figure 1: EEG surface recordings at the left temporal lobe channel (T3) and the left parietal

lobe channel (P3). Length of the time series is T = 16000; sampling rate is 100 hertz; total

time of recording is 160 seconds.

a time domain point of view which we hope can give a more illuminating interpretation

to this measure of linear dependence. Moreover, we develop an estimator that is consis-

tent and performs at least as well as the classical approach based on smoothing auto and

cross-periodograms.

For stationary time series, coherence varies only according frequency ω but remains

constant over time. In other words, under stationarity, the linear dependence between two

time series does not change with time. It is our practical experience that most data are

non-stationary. Consider for example the bivariate EEGs in Figure 1; a visual inspection

of which reveals that the variance of the EEGs evolve over time. Equivalently, the auto-

spectra may vary over time. Moreover, the nature of linear dependence between X1,t and

X2,t may change with time as well. There are time-dependent analogues of coherence

for multivariate non-stationary time series developed in the literature. Li and Klemm

(2000) use the non-decimated wavelets; Maraun and Kurths (2004) define the wavelet

cross-coherence which depends on time and scale (or frequency); Ombao, Raz, von Sachs

and Malow (2001) and Ombao, von Sachs and Guo (2005), both of which use the SLEX
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transform (an orthogonal time-localized generalization of the Fourier transform). In this

paper, we develop a procedure for estimating the time-varying coherence between time

series via a linear filtering approach. We will apply our procedure for estimating the

evolutionary coherence between the EEG signals at the left temporal lobe (T3 channel)

and the left parietal lobe (P3 channel).

The goals of this research are to present a more illuminating interpretation of coherence

via filtering and to develop a novel point-wise adaptive statistical procedure for estimating

the time-evolutionary coherence of non-stationary time series. To fix ideas, we first look

into the stationary setting. Consider a filter whose power transfer function is concentrated

at a frequency band around ω0 which we denote to be Ω = [ω0−δ, ω0+δ]. Let us denote the

filtered signals to be Y1,t and Y2,t. We will show that coherence between X1,t and X2,t at

frequency band Ω (which we call band coherence) is simply the cross-correlation between

the filtered time series Y1,t and Y2,t. Thus, based on this more intuitive interpretation, a

natural estimator for the band coherence is the sample correlation between the filtered

observed time series.

We generalize our estimation method to the non-stationary setting. Again, to fix ideas,

suppose that the scientist is interested in how coherence, at a particular band Ω, evolves

over time. First, fix a filter whose transfer function is concentrated in Ω. To estimate the

band coherence around time point t0, the procedure is simple. First, form a time window

centered around t0; apply the filter on the windowed series and finally compute the sample

correlation between the filtered signals. Note that this correlation is “localized in time”

because it is derived from observations in the time window around t0. A natural interest

is in the choice of the width of the window. One of the contributions in this paper is a

consistent procedure that automatically selects the optimal width of the time window on

which the local band coherence is to be computed. The principle is that one should use

the largest possible window within which the band coherence is almost constant. This

approach is point-wise adaptive in the sense that it finds an“optimal” window for each

time point t0 under consideration.
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This work on coherence via filtering is also closely related to band spectrum regression

for bivariate stationary time series [X1(t), X2(t)] in Hannan (1963) and Engle (1974) who

modelled the linear relationship between the two time series via X2(t) = βX1(t) + ε(t)

where the errors ε(t) are also stationary. The goal in the above-mentioned papers was

to estimate β which naturally characterizes the linear relationship between the two time

series. Their approach was to convert the time domain model into the frequency domain

thus resulting in a model that is essentially a regression between band spectra (or averaged

periodograms) of the two time series X2 and X1. This approach does not impose any

parametric structure on the autocovariance function of ε(t). The estimator for β depends

on the bandwidth used for estimating the spectrum of the error ε(t). The efficiency of

frequency domain estimator in the regression setting is studied rigorously in Xiao and

Phillips (1998) who considered higher order expansion of the coefficient estimates. In

contrast to these approaches, this present paper studies coherence in investigating the

relationship between X1 and X2. Moreover, coherence is studied under both the stationary

and non-stationary setting.

The rest of this paper is organized as follows. In Section 2, we develop the procedure

for stationary time series and then extend this to the non-stationary setting in Section 3.

Results from the simulation studies are presented in Section 4; theoretical investigations

are developed in Section 5 and finally an application of the method to epileptic seizure

EEG signals are presented in Section 6.

2 Band Coherence Estimation by Filtering for Sta-

tionary Time Series

Suppose we observe a vector-valued time series Xt = (X1,t, X2,t), t = 1, . . . , T , from a

bivariate, discrete-time, weakly stationary, zero mean process having a spectral represen-

tation Xt =
∫ π
−π exp(iωt)dZ(ω) where Z(ω) is a bivariate zero mean orthogonal increment

random process whose covariance structure cov(dZ(ω1), dZ(ω2)) = δ(ω1−ω2)f(ω1) where

δ is the Dirac-delta function and f(ω) is the spectral density matrix. The auto-spectra

5



of X1,t and X2,t are the diagonal elements denoted as f11(ω) and f22(ω) while the cross-

spectrum between X1,t and X2,t is denoted f12(ω).

The band coherence between X1,t and X2,t over frequency Ω = [ω0−δ, ω0 +δ] ⊂ [−π, π]

is defined as

K(Ω) =

∫
Ω f12(ω)dω√∫

Ω f11(ω)dω
∫
Ω f22(ω)dω

. (1)

Band coherence is a complex-valued number. Its magnitude lies in the unit interval [0, 1]

so that a value that is close to 1 indicates a strong linear association between X1,t and

X2,t. Its phase measures the time lag between the two time series. Another widely-used

index is the squared band coherence |K(Ω)|2. We note that band coherence is zero at all

frequency bands if and only if the time series X1,t and X2,t are uncorrelated.

2.1 Estimation via the periodogram matrix.

The classical approach to estimating the spectral matrix for a fixed frequency ω is via the

periodogram matrix

IT (ω) = (2πT )−1

(
T−1∑

t=0

Xt exp(−iλt)

)(
T−1∑

t=0

Xt exp(−iλt)

)∗

. (2)

The periodogram matrix is unbiased for the spectral density matrix. However, it is not con-

sistent. A consistent estimator for band coherence K(Ω) is given by Ĩ12(Ω)/
√

Ĩ11(Ω)Ĩ22(Ω)

where Ĩ``(Ω) is the averaged auto periodogram and Ĩ`m(Ω) is the averaged cross peri-

odogram across the frequency band Ω. The properties of these estimators, including their

asymptotic distribution are developed in Brillinger (1981) and Brockwell and Davis (1991).

2.2 Coherence: interpretation in terms of linear filtering

An alternate estimator of band coherence can be derived from an appropriate linear filtering

of the time series X1,t and X2,t. Suppose that the goal is to estimate band coherence at

Ω = [ω0 − δ, ω0 + δ]. The first task is to construct an absolutely summable sequence {bk}

with transfer function B(ω) =
∑∞

k=−∞ bk exp(−iωk) that is concentrated on Ω, i.e.,

B(ω) =

{ √
1/(2δ) for ω ∈ Ω

0 elsewhere
(3)
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where 2δ is the length of the interval Ω. The corresponding time sequence is given by the

inverse Fourier transform of B:

bk =

{
1
2π

√
2δ for k = 0

2
2πkeiω0k sin(δk)

√
1/(2δ) for k 6= 0

(4)

We first note that the filter sequence is allowed to be complex so that, if desired, it would

be possible to analyze phase-lag relationships between the resulting filtered time series.

However, if one must use a real-valued filter, then it is straightforward to generalize this

by imposing the transfer function to be concentrated at both ω0 and −ω0.

Applying the same filter {bk} on both X1,t and X2,t gives the output filtered time series

Yt = (Y1,t, Y2,t) where Y`,t =
∑∞

s=−∞ bt−sX`,s for ` = 1, 2 . The spectral density matrix

fY of the bivariate filtered process Yt is related to the spectral density matrix fX of the

original process Xt by fY
`n(ω) = |B(ω)|2fX

`n(ω) 1 6 `, n 6 2. We derive the variances

and the cross-covariance between Y1,t and Y2,t to be

Var(Y1,t) =
∫ π

−π
|B(ω)|2fX

11(ω)dω =
∫

Ω

1
2δ

fX
11(ω)dω = fX

11(Ω) (5)

Var(Y2,t) =
∫ π

−π
|B(ω)|2fX

22(ω)dω =
∫

Ω

1
2δ

fX
22(ω)dω = fX

22(Ω) (6)

Cov(Y1,t, Y2,t) =
∫ π

−π
|B(ω)|2fX

12(ω)dω =
∫

Ω

1
2δ

fX
12(ω)dω = fX

12(Ω). (7)

This implies that Corr(Y1,t, Y2,t) = fX
12(Ω)/

√
fX
11(Ω)fX

22(Ω) which is identical to the the

band coherence in Equation (1). We believe that the above sheds light on the interpretation

of the band coherence between two time series and gives a precise meaning to “frequency

analogue of correlation”. That is, coherence K(Ω) may be seen as the correlation between

two filtered signals, where the (band pass) filter is concentrated at the band Ω.

Consequently, a reasonable estimator of K(Ω) is given by the sample cross correlation

K̂(Ω) =
T−1

∑T
t=1 Y1,tY

∗
2,t√

T−1
∑T

t=1 Y1,tY ∗
1,t

√
T−1

∑T
t=1 Y2,tY ∗

2,t

. (8)

We state a central limit theorem for the band coherence estimator. The proof is given

in the appendix.
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Proposition 2.1. Let X(t) be a stationary linear process X(t) =
∑∞

s=−∞C(t + s)Z(s)

where {Z(s)} is an iid innovation process with non-singular covariance matrix Σ such

that for ` = 1, 2, E Z`(t)4 < ∞. Moreover, for ` = 1, 2, the sequence of matrices C fulfills
∑∞

u=−∞
√
|u||Cj,`(u)| < ∞. Then T

1
2 tanh−1(|K̂(Ω)|) is AN

(
tanh−1(|K(Ω)|), δ−1

)
.

Consequently, we can form an approximate 100(1−α)% confidence interval for |K(Ω)|.

Let Φ(.) be the cdf of a standard normal. Then an approximate 100(1 − α)% confidence

interval for tanh−1 |K(Ω)| is of the form [W0,W1] = tanh−1 |K̂(Ω)|±Φ(α/2)(δT )−
1
2 . Finally,

an approximate 100(1−α)% confidence interval for |K(Ω)| is
[

exp(2W0)−1
exp(W0)+1 , exp(2W1)−1

exp(W1)+1

]
which

is contained in [0, 1].

2.3 Remarks.

For a band pass filter whose power transfer function is concentrated at band Ω, we note that

Var(Y`,t) =
∫
Ω

1
2δfX

`` (ω)dω. Thus, the sample variance of Y`,t, V̂ar(Y`,t) = 1
T

∑T
t=0 Y`,tY

∗
`,t,

would lead to a consistent estimator of the auto spectra fX
`` (Ω) (` = 1, 2). It is quite

remarkable that this approach was already proposed in Pupin (1894) more than a cen-

tury ago and, according to Brillinger (1981), could be the first spectral estimator used in

practice.

Moreover, similar to the above alternate estimator of the auto spectra, a consistent esti-

mator the cross spectrum fY
12(Ω) can be obtained via the sample cross-covariance between

the two filtered time series Ĉov(Y1,t, Y2,t) = 1
T

∑T
t=1 Y1,tY

∗
2,t .

3 Evolutionary Band Coherence of Non-Stationary

Time Series

Consider a sequence of zero mean Gaussian bivariate locally stationary stochastic process

[as in Dahlhaus (2000))] Xt,T = (X1,T (t), X2,T (t)), t = 1, . . . , T , with transfer function

matrix A(o) having a spectral representation Xt,T =
∫ π
−π A(o)

t,T (ω) exp(iωt)dZ(ω) with the

following properties
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(i.) Z(ω) is a zero mean complex-valued Gaussian bivariate process on [−π, π] with

dZ∗(ω) = dZ(−ω) and E {dZj(ω), dZ`(ω)} = δj` η(ω + λ) dω dλ, where η(λ) =
∑∞

k=−∞ δ(λ + 2πk) is the 2π periodic extension of the Dirac delta function; and

(ii.) There exists a constant C and a 2π-periodic matrix-valued function A : [0, 1]×R→

C2×2 with A∗(u, ω) = A(u,−ω) and supt,ω|A(o)
t,T (ω)j` − A(t/T, ω)j,`| ≤ CT−1 for

j, ` = 1, 2 and T ∈ N.

The function A(u, ω) is continuous in rescaled time u and the time-varying spectral matrix

is f(ω) = A(u, ω)A∗(u, ω). In other words, the auto-spectra and cross-spectrum at rescaled

time u frequency ω are, respectively, f11(u, ω), f22(u, ω) and f12(u, ω). Our goal is to

estimate coherence at rescaled time u ∈ [0, 1] and frequency band Ω, which we define to be

K(u,Ω) =

∫ π
−π |B(ω)|2f12(u, ω)dω√∫ π

−π |B(ω)|2f11(u, ω)dω
∫ π
−π |B(ω)|2f22(u, ω)dω

. (9)

The essential idea in our approach is to find the largest possible U that contains the target

time point u where for any v ∈ U , |K(u,Ω) − K(v, Ω)| is small. In this case, we denote

the local coherence averaged over the interval U ⊂ [0, 1] and frequency band Ω ⊂ [−π, π]

is defined to be

K(U,Ω) =

∫ π
−π

∫
U |B(ω)|2f12(u, ω)dωdu√∫ π

−π

∫
U |B(ω)|2f11(u, ω)dωdu

∫ π
−π

∫
U |B(ω)|2f22(u, ω)dωdu

. (10)

3.1 Local coherence: interpretation in terms of linear filter-

ing

We now extend the ideas in the stationary case to the situation where coherence is allowed

to evolve over time. First, we define the interval U on rescaled time to be [u0, u1] ⊂ [0, 1].

The corresponding interval of U on real time is {[u0T ], . . . , [u1T ]}. Consider the time series

at the local interval {[u0T ], . . . , [u1T ]} to be:

X1,T (t) · 1U (t) and X2,T (t) · 1U (t)

9



where 1U (t) = 1 if t/T ∈ U and 1U (t) = 0 if t/T /∈ U . We apply the filter bk to the

windowed time series to produce

Y1,T (t) =
∞∑

k=−∞
bt−kX1,T (k)1U (k) and Y2,T (t) =

∞∑

k=−∞
bt−kX2,T (k)1U (k)

The variances of and cross-variance between Y1,T (t) and Y2,T (t) are, respectively,

Var(Y1,T (t)) =
∫ π

−π

∫

U
|B(ω)|2f11(u, ω)dωdu + oT (1)

=
∫

Ω

∫

U

1
2δ|U |f11(u, ω)dωdu + oT (1);

Var(Y2,T (t)) =
∫ π

−π

∫

U
|B(ω)|2f22(u, ω)dωdu + oT (1)

=
∫

Ω

∫

U

1
2δ|U |f22(u, ω)dωdu + oT (1);

Cov(Y1,T (t), Y2,T (t)) =
∫ π

−π

∫

U
|B(ω)|2f12(u, ω)dωdu + oT (1)

=
∫

Ω

∫

U

1
2δ|U |f12(u, ω)dωdu + oT (1)

Denote for `,m = 1, 2, f`m(U,Ω) =
∫
Ω

∫
U

1
2δ

1
|U |f`m(u, ω)dωdu. It follows that the correla-

tion between Y1,T (t) and Y2,T (t) is Corr(Y1,T (t), Y2,T (t)) = f12(U,Ω)/
√

f11(U,Ω)f22(U,Ω)

which is clearly identical to the quantity K(U,Ω) in Equation (10). This suggests that a

good estimator for K(U,Ω) is

K̂(U,Ω) :=

∑
t:t/T∈U Y1,T (t)Y ∗

2,T (t)√∑
t:t/T∈U Y1,T (t)Y ∗

2,T (t)
∑

t:t/T∈U Y2,T (t)Y ∗
2,T (t)

. (11)

We state a central limit theorem for the band coherence estimator under the Dahlhaus

locally stationary process. The proof is given in the appendix.

Proposition 3.1. Let XT (t) = [X1,T (t), X2,T (t)]′, t = 1, . . . , T , be a Gaussian locally

stationary process (as in Dahlhaus, 2000). Define 2mT + 1 to be the number of discrete

frequencies in the band Ω. Then, as T →∞, mT →∞, mT /T → |U ||Ω|
2π and

√
2(2mT + 1)

1− E|K̂(U,Ω)|2
(
|K̂(U,Ω)| − E|K̂(U,Ω)|

)
→ N(0, 1).
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3.2 Point-wise adaptive selection method for the optimal

time window U

Suppose we want to estimate the absolute band coherence of a locally stationary bivariate

time series at frequency band Ω, around a given time point u. The basic idea of our

procedure is to find the largest possible interval U = [u0, u1], where u0 < u < u1 where the

local band coherence is approximately constant. This locally adaptive approach is related

to the work of Lepski (1990) in the non-parametric regression context for iid data; see also

Mercurio and Spokoiny (2004) and Van Bellegem and von Sachs (2005).

First, we set some notation. Let nU be the number of time points included in the

real time interval {[u0T ], . . . , [u1T ]}; let (2m + 1) be the number of discrete frequencies

in the frequency interval Ω; and |Ω| be the length of the frequency band Ω. Given that

the corresponding real time interval has nU observations, then the resolution in frequency

is 2π/nU . Consequently, the number of discrete frequencies in Ω corresponding to this

resolution is 1+nU |Ω|/(2π). This leads to the relationship 2m+1 = nU |Ω|
2π +1 By replacing

2m + 1 in the above central limit theorem and applying the delta-method we derive

aU

(
tanh−1(|K̂(U,Ω)|)− tanh−1 E(|K̂(U,Ω)|)

)
d−→ N (0, 1) (12)

where aU is such that a2
U = 2 + nU |Ω|/π. We now give a complete working algorithm to

select U .

Initialization. Select the smallest interval U0 containing u.

Iteration. Set U = U0 and calculate the corresponding estimate K̂(Ω, U). Expand the

interval U to U∗ = U1, i.e., U ⊂ U∗ and then calculate the corresponding estimate

K̂(Ω, U∗).

Testing heterogeneity. Define the following quantities:

∆(U,U∗) = | tanh−1(|K(U,Ω)|)− tanh−1(|K(U∗,Ω)|)|

∆̂(U,U∗) = | tanh−1(|K̂(U,Ω)|)− tanh−1(|K̂(U∗,Ω)|)|

D(U,U∗) =
∆̂(U,U∗)
a−1

U + a−1
U∗

. (13)

11



If D(U,U∗) > ζ, for some preselected constant ζ, then heterogeneity in coherence

within the larger interval U∗ is detected. The decision is to keep U = U1 as the

optimal interval of homogeneity.

Loop. If D(U,U∗) ≤ ζ, then there is no sufficient evidence for heterogeneity within U∗.

Set U = U1 and expand to U∗ = U2. Calculate the corresponding estimate K̂(Ω, U∗).

Test for heterogeneity in Equation (13) and continue expanding until heterogeneity

is detected.

This procedure determines the largest possible interval around the time point u on

which we can estimate the local band absolute coherence using the filtering method ex-

plained in the previous section. This approach is pointwise adaptive in the sense that it

finds a different “optimal” interval for each time point u under consideration. It is also

important to note that we do not make any global assumption on the behavior of the co-

herency structure between the two time series. In particular, we do not assume the process

to be piecewise stationary. The only implicit assumption is that around each time point t0

there is some interval where coherence is approximately constant (homogenous) so that we

can compute the band coherence as the sample correlation between to filtered time series.

The theoretical justification of (13) comes from the Central Limit Theorem (Proposition

3.1), which implies:

P




∣∣∣tanh−1(|K̂(U,Ω)|)− tanh−1(|K̂(U∗, Ω)|)
∣∣∣

a−1
U + a−1

U∗
> ζ




6 P
(∣∣∣tanh−1(|K̂(U,Ω)|)− tanh−1(|K(U,Ω)|)

∣∣∣ > a−1
U ζ

)

+ P
(∣∣∣tanh−1(|K̂(U∗, Ω)|)− tanh−1(|K(U∗, Ω)|)

∣∣∣ + ∆(U,U∗) > a−1
U∗ζ

)
(14)

Under the assumption of near-constant coherence (or “homogeneity”), ∆(U,U∗) ≈ 0.

Thus, by the central limit theorem, the above probability is asymptotically bounded by

4Φ(ζ).

In practice, the choice of the threshold ζ in (13) based on the central limit theorem

leads to a very conservative test rule. That is, the method tends to choose a larger interval
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even in the presence of heterogeneity of the band coherence. This can cause severe bias

problems. Thus, one has to seek an alternative data-driven approach to determining the

critical value ζ. Note that the choice of this parameter is global in the sense that it does

not depend on u.

We propose a data-driven procedure to select the critical value based on the minimiza-

tion of some prediction error. First we define a grid of potential critical values ζ and a

set of test time points T = {t1, . . . , tN}. For each candidate critical value ζ and each

test point t ∈ T , we consider the corresponding segment U ζ
t given by the above procedure

around the time point t. The selected segment U ζ
t can be used to compute the localized

coherency around u, where [uT ] = t using the filtered estimator. We denote this estimator

by K̂ζ(u,Ω). By doing so for different time points t ∈ T , we select the critical value ζ̂ such

that minimizes the prediction error is reached

ζ̂ = arg min
ζ

∑

t∈{t1,...,tN}

{
Y1,T (t)− K̂ζ

21(t/T,Ω)
σ̂2

σ̂1
Y2,T (t)

}2

where σ̂2
` = n−1

Uζ
t

∑
s∈Uζ

t
Y 2

`,T (s).

The above criterion is motivated by the mean-squared error of linear predictors. Assume

Y1 and Y2 to be zero mean random variables. Define βY1 to be the linear predictor for Y2.

The “best” linear predictor minimizes the mean squared prediction error E(Y2−βY1)2. The

value of β that minimizes the mean squared prediction error is β = Cov(Y2, Y1)/Var(Y1) =

K21

√
VarY2/VarY1. The next section shows that this procedure gives reasonable results

in simulations and analysis of EEG data.

4 Simulations and Coherence Analysis of EEGs

We investigated the performance of our estimator on a small simulation study and then

analyzed a pair of EEGs recorded during an epileptic seizure.

4.1 Simulation Study

We describe the model from which we generated the non-stationary time series. First, we

considered a latent independent stationary processes Z1(t) and Z2(t) with spectra h1(ω)

13



and h2(ω) respectively. Next, we generated the observed bivariate non-stationary time

series from the model

X1,T (t) = A11(t)Z1(t) + A12(t)Z2(t) + W1,t (15)

X2,T (t) = A21(t)Z1(t) + A22(t)Z2(t) + W2,t (16)

where W1 are W2 are mutually independent stationary white noise processes. Moreover,

the W ’s and the Z’s are independent. We note that if A`n(t) is constant in time, then

Xt is stationary. Otherwise, Xt,T is non-stationary. We now derive the band coherence

between X1,T (t) and X2,T (t) based on the above model. Denote the spectra of the white

noise process to be identically σ2

2π . Consequently, the auto-spectra of X1,T (t) and X2,T (t)

at rescaled time u such that [uT ] = t, are

f11(u, ω) = |A11(t)|2h11(ω) + |A12(t)|2h22(ω) +
σ2

2π

f22(u, ω) = |A21(t)|2h11(ω) + |A22(t)|2h22(ω) +
σ2

2π
,

respectively. The cross-spectrum between X1,t and X2,t is derived to be

f12(ω, u) = A11(t)A21(t)h11(ω) + A12(t)A22(t)h22(ω).

For illustration purposes, the goal was to estimate evolutionary band coherence K(u, Ω)

at frequency band Ω = [ω0 − δ, ω0 + δ] where ω0 = 2π
102464 and δ = 2π

10242. The plots of the

true curve and the average of the estimated curves from 1000 data sets using the filtering

and the periodogram methods are given in Figure (2). The 10-th and 90-th percentile

curves for the two methods are given in Figure (3). The estimated bias and standard

deviation of filtering method is (0.0063; 0.0070) while that of the periodogram smoothing

method is (0.0066; 0.0070). This study indicates that the filtering method is not worse

than the classical auto and cross-periodogram smoothing approach. In fact, the filtering

approach has a slightly smaller bias.

4.2 Evolutionary Band Coherence Analysis of EEGs

We illustrate the method for estimating the evolutionary absolute band coherence between

the EEGs recorded at the T3 (left temporal lobe) and P3 (left parietal lobe) channels
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Figure 2: Band coherence for the non-stationary process. Plots of the true band coherence

and average of the estimates from 1000 data sets obtained from the filtering method and the

periodogram smoothing method.
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Figure 3: Band coherence for the non-stationary process. Plots of the 10-th percentile; 90-th

percentile and average curves of the estimates from 1000 data sets obtained from the filtering

method and the periodogram smoothing method.
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Figure 4: Estimate of the evolutionary absolute coherence between the EEGs at the T3 and P3

channels at the alpha band 8− 12 hertz.

during an epileptic seizure. Band coherence was analyzed at the alpha (8− 12 hertz) and

the beta (12 − 30 hertz) bands. It is typical in the EEG literature to categorize absolute

coherence in the interval [0, 0.3) to be “weak”; [0.3, 0.7) to be “moderate” and [0.7, 0.1] to

be “strong”. The results of our analysis further confirm clinicians’ theories about epileptic

seizure and bring about some useful information that would not have been obvious by

a mere visual inspection of the EEGs. We first observe that the coherence profiles at

the beta and alpha bands are quite different. In particular, coherence at the beta band

fluctuates from weak to moderate while that at the alpha band fluctuates from moderate to

strong. Compare Figures (4) and (5). It is possible to relate our findings with the model in

Equation (15) which is a perfectly reasonable model that gives a spectral decomposition of

EEGs. Suppose that the spectra of the latent processes h11(ω) and h22(ω) are concentrated,

respectively, at the alpha and beta bands. Then mixing coefficients A11(t) and A21(t) are

larger in magnitude than A12(t) and A22(t). In other words, the underlying neuronal

aggregates firing at the alpha frequency band has a more pronounced excitatory effect on

the electrical activity at the left temporal and parietal brain regions. Finally, our analysis

clearly demonstrates that the strength of linear dependence between the two brain regions

can change very quickly during an epileptic seizure.
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Figure 5: Estimate of the evolutionary absolute coherence between the EEGs at the T3 and P3

channels at the beta band 12− 30 hertz.

5 Conclusion and Discussion

In summary, this paper presented an intuitive interpretation of coherence at a frequency

band. That is, coherence is equivalent to the correlation between the two filtered time

series. Moreover, we derived asymptotic normality of the Fisher-z transform of the abso-

lute coherence and developed a novel adaptive non-parametric procedure for estimating

coherence when the time series are locally stationary, that is, the nature of linear depen-

dence between time series may evolve with time. The procedure automatically selects,

via repeated tests of homogeneity (in time) of coherence, the optimal width of the time

window on which one computes the estimated local coherence. This approach is point-wise

adaptive in the sense that the width of the optimal interval is allowed to change across

time.

Furthermore, this interpretation of coherence allows one to generalize the concept to

partial coherence. To illustrate the idea, let Xt = [X1,T (t), X2,T (t), X3,T (t)]′ be a tri-

variate time series. By applying the local filter on Xt at local time window U , we obtain

the filtered series [Y1,T (t), Y2,T (t), Y3,T (t)]′. The correlation between filtered series Y1,T (t)

and Y2,T (t) with the linear effect of Y3,T (t) removed is the partial coherence at frequency Ω:

K12.3(U,Ω) = K12(U,Ω)−K13(U,Ω)K∗23(U,Ω)√
[1−|K13(U,Ω)|2][1−|K23(U,Ω)|2]

, where K`m(U,Ω) is defined as in Equation (10),
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which can be estimated consistently using the procedure in Section 3.
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APPENDIX

Proof of Proposition 2.1. Denote k̂j` = T−1
∑

t Yj(t)Y ∗
` (t) for j, ` = 1 or 2. The

modulus of the coherence can be written

|K̂(Ω)| =

√
ĉ2
12 + d̂2

12√
k̂11k̂22

= h
(
k̂11, k̂22, ĉ12, d̂21

)

where ĉ12 := (k̂12 + k̂21)/2 and d̂12 := (k̂12 − k̂21)/(2i).

We first consider the asymptotic distribution of the vector (k̂11, k̂22, ĉ12, d̂21). To com-

pute the expectation we note that, by definition of Yj(t),

Ek̂j` = T−1
∑
t,s,m

bt−sbt−mE{Xj(s)X∗
` (m)}

which, using the spectral representation of the (cross-)covariance E{Xj(s)X∗
` (m)} and the

definition of the sequence bk, leads to

E k̂j` = (2δ)−1

∫

Ω
fj`(ω)dω ≡ fj`(Ω).

Consequently, E (k̂11, k̂22, ĉ12, d̂21) = (f11(Ω), f22(Ω), c12(Ω), d12(Ω)) with c12(Ω) = (f12(Ω)+

f21(Ω))/2 and d12(Ω) = (f12(Ω)− f21(Ω))/(2i).

To derive the covariance and asymptotic normality, we first expand the formula of k̂j`

for using the definition of {bk}

k̂j` =
(2π)2

T

∫∫
B(ω)B(λ)dj(ω)d`(λ)

∑
t

exp(−i(λ− ω)t) dω dλ

where dj(ω) = T−1/2
∑

s Xj(s) exp(−iωs) is the Fourier transform of the time series Xj(s).

It follows from the Poisson formula
∑∞

n=−∞ exp(−inTω) = 2π
T

∑∞
k=−∞ δ(ω − 2πk

T ) [see

Mallat (1998), Section 2, for a proof] that the above quantity has the same limiting dis-

tribution as k̃j` := (2π)
∫

B(ω)Ij`(ω) dω, where Ij` denotes the cross-periodogram. The

limiting distribution of k̃j` clearly follows using Hannan (1970, Section V.5). The vector

(k̂11(Ω), k̂22(Ω), ĉ12(Ω), d̂21(Ω))′ is asymptotically Normal with

E(k̂11(Ω), k̂22(Ω), ĉ12(Ω), d̂21(Ω))′ = (f11(Ω), f22(Ω), c12(Ω), d21(Ω))′
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and covariance matrix



f2
11(Ω) |f12(Ω)|2 f11(Ω)c12(Ω) f11(Ω)d12(Ω)

|f12(Ω)|2 f2
22(Ω) f22(Ω)c12(Ω) f22(Ω)d12(Ω)

f11(Ω)c12(Ω) f22(Ω)d12(Ω) 1
2 (f11(Ω)f22(Ω) + c2

12(Ω)− d2
12(Ω)) c12(Ω)d12(Ω)

f11(Ω)d12(Ω) f22(Ω)d12(Ω) c12(Ω)d12(Ω) 1
2 (f11(Ω)f22(Ω) + d2

12(Ω)− c2
12(Ω))




Finally, by an application of the Delta method, the claimed asymptotic distribution of

tanh−1(|K̂(Ω)|) follows.

Proof of Proposition 3.1 The proof is similar to the proof of Proposition 2.1. The main

difference is the derivation of the asymptotic distribution of the vector (k̂11, k̂22, ĉ12, d̂21),

where k̂j` is now defined by k̂j` := |U |−1
∑

t∈U Yj(t)Y ∗
` (t) for j, ` = 1 or 2. A straightfor-

ward expansion leads to

Ek̂j` =
1

T |U |
∫∫

B(ω)B(λ)
∑

k

exp(−i(λ−ω)k)
∑

s,t∈U

exp(−i(sω− tλ))EXj;T (s)X`;T (t)

With the change of variables h := s− t, this expectation can be written

1
T |U |

∫∫
B(ω)B(λ)

∑

k

exp(−i(λ−ω)k)
∑

δ

∑
t

cj`

(
t

T
+

h

2T
, h

)
exp(−it(ω−λ)) exp(−ihω)+oT (1).

where cj`(u, h) is the evolutionary cross-covariance function at lag h, i.e.,

cj`(u, h) := 2π

∫ π

−π
fj`(u, ω) exp(−iωh)dω.

Using that the total variation of the function x 7→ cj`(x, h) is finite, and using the Poisson

formula for the sum over k, the leading term of expectation is

|U |−1

∫
|B(ω)|2

∞∑

h=−∞

∫

U
cj` (u, h) exp(−ihω)du = |2δU |−1

∫

Ω

∫

U
fj` (u, ω) dωdu ≡ fj`(U,Ω).

The asymptotic distribution follows using the same technique, and similarly to the proof

of Proposition 2.1.
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