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Abstract

Polytomous logistic regression combined with spline smoothing gives a
powerful tool for Bayesian density estimation. Using fast array algorithms,
multiple dimensions can be handled in a fast and uniform way. The Lange-
vin-Hastings algorithm allows efficient sampling from the associated (re-
parameterized) posterior distribution. Illustrations of density estimation
are provided, as well as a new approach to smooth quantile regression.

Key words: histogram; polytomous logistic regression; P-splines; Lange-
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1 Introduction

Density estimation is an almost neglected topic in modern Bayesian statistics.
Heavy computation with sophisticated algorithms is the standard, but results
are mostly presented as kernel-smoothed (one-dimensional) distributions, using
default settings, or just as histograms. In the Bayesian literature, density estima-
tion has been treated as a step-child; it is not considered explicitly in standard
reference books. Our goal here is to fill in the gaps, using a combination of
polytomous logistic regression, penalized splines and efficient simulation.

Undoubtedly, BUGS is the most popular package for doing Bayesian statistics.
One can present results as scatterplots or as kernel-smoothed densities. The
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bandwidth of the smoothing kernel can be tuned, but this is a subjective process.
There is hardly any discussion of this issue in the BUGS documentation. The
package CODA, which is available for R and S-PLUS, provides functions for
post-processing of BUGS output. It uses the S function density() for kernel
smoother, providing several automatic plug-in type of choices for the bandwidth.

Perhaps the only advantage of kernel smoothing is that it is easy to explain:
replace the individual observations by little humps and add them up. This is
not a good recipe for computation with large data sets. Several authors have
proposed algorithms that first count observations in (narrow) bins. Each bin then
is replaced by a hump, scaled by the number of observations in the bin. When
many bins are being used, the effort can be decreased dramatically with the Fast
Fourier Transform (FFT) (Silverman, 1986). In principle the FFT scheme can
be extended to two dimensions or more, but this seems to be applied seldomly.
A practical alternative is the use of a discrete smoother with a positive impulse
response (Eilers and Goeman, 2004).

With appropriate algorithms, computation of kernel smoothers does not have
to be a real obstacle, but several other properties are undesirable. The kernel
smoother always increases spread, i.e. the variance of the density estimate will
always be larger than that of the raw data. There is also a problem at intrinsic
domain boundaries. If a variable can only be positive, spreading by the kernel
will produce non-zero density estimates on the negative axis, which looks sloppy.
Positive variables often show densities with a peak near or at the origin. It
can become severely rounded by a kernel smoother. Ad-hoc solutions exist, like
mirroring the data, or designing specialized boundary kernels, but they are not
very successful.

Optimization of the kernel bandwidth can be done by cross-validation (CV).
Using, say, 10-fold, CV, this is not a real hurdle, but leave-one-out CV schemes
are unattractive. From a Bayesian perspective, it is far from clear how to state a
proper model to represent kernel smoothing.

Many researchers have approached Bayesian density estimation as the estima-
tion of normal mixtures. A seminal paper was the one by Roeder and Wasserman
(1997). They considered one-dimensional smoothing, but the concept can be gen-
eralized directly to higher dimensions (”model based clustering”). When doing
McMC simulations, each individual observation has to be connected to each com-
ponent of the mixture. For large data sets one should also introduce some way
of binning of the data, to keep the computational effort in reasonable bounds.
The model is simple, but special care may be needed, to maintain proper labeling
of the components of the mixtures (Stephens, 2000). Additional complications
arise when one allow the number of components to change during the simulations.
Normal mixtures have problems to respect domain boundaries.

Müller and Vidakovic (1998) model the square root of a density as a sum of
wavelets, implicitly computing a narrow-bin histogram. They do not mention the
size of the wavelet basis, but presumably it is relatively large. Simulation is done
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with a Metropolis sampler.
Heikkinen and Arjas (1998) consider spatial Poisson intensity estimation,

which is of course equivalent to two-dimensional density estimation, as they in-
dicate in their discussion. They construct a Voronoi tesselation of the plane,
determined by the positions of the observations. Within each Voronoi tile the
intensity is assumed to be constant. A difference prior, on the logs of the in-
tensities of neighboring tiles, models the assumption of smoothness. Simulation
is done by a complex McMC scheme. For large data sets this method will not
work, because of the complexity of computing the tesselation. Also the number
of parameters increases linearly with the number of observations. Extension to
higher dimensions is far from straightforward.

Hansen and Kooperberg (2002) discuss Bayesian estimation of the Logspline
model. They model the logarithm of a density as a sum of natural cubic regres-
sion splines (in one dimension) or as a sum of linear triangular patches (in two
dimensions). The number and the positions (chosen from those of the observa-
tions) are the parameters of the model, and specialized priors are introduced. In
addition there is a roughness penalty, based on second derivatives. The weight
of this penalty is set to a fixed number.

We model the logarithm of the density as a sum of scaled B-splines. This
is similar to work by Kooperberg and Stone (1991). However, we do not try to
optimize the number and positions of the knots that define the B-splines. Instead,
we start out with many equally spaced knots, defining a basis that is “too rich”:
it provides more flexibility than needed. To get the desired smoothness, we put
a difference penalty on the coefficients and the weight of this penalty is tuned to
the data. This is the P-spline approach, advocated by Eilers and Marx (1996)
and inspired by the work of O’Sullivan (1988).

In a Bayesian setting the penalty is the logarithm of a prior density of the
differences of the coefficients. Efficient simulation is possible with the Langevin-
Hastings algorithm (Roberts and Tweedie, 1996) and proper rotation of the pa-
rameter vector. This approach has shown its value in hazard estimation in sur-
vival models with varying coefficients (Lambert and Eilers, 2005). In some sense
one-dimensional density estimation is simplified hazard estimation (without co-
variates), so we could stop here. However, we extend our approach to multidi-
mensional density estimation, making use of recently developed fast methods for
weighted regression on tensor product basis functions when the data are posi-
tioned on grids (Eilers et al., 2006; Currie et al., 2006).

The spline coefficients are found by penalized polytomous logistic regression
applied to the counts in a histogram with narrow bins. Polytomous logistic re-
gression can be extended to multidimensional histograms, using tensor products
of B-splines as basis functions. The difference penalties can be extended to mul-
tiple dimensions too, so P-splines can be generalized to this setting. However,
straightforwardly constructing the basis matrix and performing the weighted re-
gressions leads to problems, in memory use and in computation time. Eilers et al.
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(2006) present an algorithm in which the multidimensional basis matrix is avoided
completely. The computations are rearranged in such a way that one works along
each dimension separately. This saves orders of magnitude in memory use and
computation time. The algorithm has been used successfully for smoothing (and
extrapolation) of large mortality tables (Currie et al., 2004b). The underlying
array algorithms are presented more formally by Currie et al. (2006).

The plan of the paper is as follows. In the next section we present univariate
density smoothing, introducing the histogram approach, logistic regression on
penalized splines, the corresponding Bayesian setting and the choice of prior.
Section 3 extends our approach to two-dimensional smoothing. A new element
is anisotropic smoothing, with different amounts of smoothing along the two
dimensions. In this section we already use fast algorithms that avoids explicit
computations with tensor product bases. Matrix operations are sufficient there,
but in higher dimensions one has to switch to specific array algorithms, which are
described in Section 4. Efficient sampling is the key to success in the application of
Bayesian models. In Section 5 we present an adaptation of the Langevin-Hastings
algorithm, with automatic tuning and rotation of the parameter vector. Section 6
presents several applications in one and two dimensions. It also contains some
details on how we implemented the algorithm, using the R system. Of special
interest is a new approach to quantile smoothing. The paper ends with a short
Discussion.

2 Univariate density smoothing

Assume that a random sample {yj, j = 1 . . . , n} of a random variable Y has been
observed and that an estimation of the density fY of Y is of interest.

2.1 Histogram

Following Eilers and Marx (1996), we propose to tackle the problem by starting
from the histogram associated to a large number I of bins with equally spaced
limits. This requires the specification of a compact interval [ymin, ymax] over which
most of the probability mass is expected to be found. Let xi denote the center of
the ith bin and ni be the number of observations in that bin of width ∆. Then,
it is well known that

(N1, . . . , NI) ∼ Mult(n; π1, . . . , πI) where πi =
∫ xi+∆/2

xi−∆/2
f(z) dz ≈ f(xi)∆ .

where Mult stands for multinomial distribution.
Consider a basis {bk(·) : k = 1, . . . , K} of cubic B-splines associated to equidis-

tant knots on [ymin, ymax]. If (B)ik = bik = bk(xi) denotes the I×K matrix giving
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the basis functions evaluated at the bin midpoints, then a possible model for
π = (π1, . . . , πI)

′ is the polytomous logistic regression

log
(

πi

π1

)

= ηi =
∑

k

bikφk (i > 1)

where the 1st bin is the (arbitrary) reference category and the φk are regression
coefficients. It corresponds to

πi =
eηi

eη1 + eη2 + . . . + eηI
(1)

with η1 = 0.
Equivalently, one could consider Equation (1) with

ηi =
∑

k

bikφk ∀ i

Then, for identifiability reasons, one should constrain the regression parameters
φ′ = (φ1, . . . , φK) as πi(φ) = πi(φ + a) for any real a. This was done in the
first specification by requiring η1 = 0. Below, we shall require that

∑

k φk = 0.
The corresponding log-likelihood, with the identifiability constraint, is

log L(φ|n) =
∑

i

ni log πi (2)

with gradient

∂l

∂φ
= B′(n − µ) (3)

where µ = nπ. Note that the gradient of the log-likelihood or of the log-posterior
will be systematically provided as it is required in the proposed inference process
(see Section 5).

2.2 Roughness penalty

A large number of knots (say 20) is recommended to give enough flexibility in the
approximation; however, that flexibility should be counterbalanced by a rough-
ness penalty to give a smooth estimate of the density.

In a Bayesian setting, a roughness penalty translates into a prior distribution
on the splines coefficients. More specifically, we shall translate the frequentist
proposal made by Eilers and Marx (1996) by penalising the rth order differences
of the successive B-splines coefficients by assuming that

∆rφk ∼ N(0, τ−1
q )
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That idea was already successfully used in several papers in various contexts (see
e.g. Lambert and Eilers (2005) in survival analysis, Lambert (2005) in copula
estimation, Berry et al. 2002 in normal regression models and Lang and Brezger
2004 in additive models to cite a few). Consequently, we propose to multiply the
prior for the B-splines coefficients by

τR(P )/2 exp
{

−
1

2
τ φ′Pφ

}

.

where R(P ) denotes the rank of P and P = D′D is the matrix such that
∑

k

(∆rφr)
2 = φ′Pφ

For example, with r = 2, one has

D =













1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

. . .
. . .

. . .
...

0 0 . . . 1 −2 1













.

and R(P ) = K − 2. A gamma prior G (a, b) with a large variance (as obtained
by taking a = b = .0001, say) is usually advocated (Lang and Brezger, 2004) to
express our prior ignorance about suitable values for τ . However, this cannot be
true in specific circumstances (Jullion and Lambert, 2005). Alternatives will be
presented in Section 2.4.

With the preceding gamma prior, the log of the joint posterior is

log p(φ, τ |n) =
∑

i

ni log πi +
1

2
R(P ) log τ −

1

2
τ φ′Pφ

+(a − 1) log τ − bτ (4)

with associated gradient

∂ log p(φ, τ |n)

∂φ
= B′(n − µ) − τ Pφ (5)

∂ log p(φ, τ |n)

∂τ
=

R(P )

2τ
−

1

2
φ′Pφ +

a − 1

τ
− b (6)

2.3 Marginal posterior

The penalty parameter τ can be integrated out (Lambert, 2005) yielding the
marginal log-posterior

log p(φ|n) =
∑

i

ni log πi − [a + 0.5R(P )] log (b + 0.5 φ′Pφ) (7)

with gradient

∂ log p(φ|n)

∂φ
= B′(n − µ) −

a + 0.5R(P )

b + 0.5 φ′Pφ
Pφ (8)
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2.4 Robust penalty prior

In specific circumstances, the variance of the gamma prior for the roughness
penalty parameter τ can strongly influence the smooth of the fitted curve (Jullion
and Lambert, 2005). A robust mixture (see Bolstad, 2004, Chap. 14) for τ can
be chosen instead (Lambert, 2005). Let Q = {aq = 10−q : q = 1, . . . , Q} (say)
be the set of values that we would like to evaluate for a = b and denote by Qq

the qth prior model. A mixture prior for τ giving an equal prior weight to the Q
possibilities is

(τ |Qq) ∼ G(aq, bq) with p(Qq) =
1

Q

where p(Qq) denotes the prior probability associated to the qth prior. The joint
posterior distribution for (φ, τ, Qq) is

p(φ, τ, Qq|n) ∝ L(φ|n) p(φ|τ) p(τ |Qq) p(Qq)

The conditional posterior distributions, useful to set up a Gibbs sampler, are

p(φ|τ, Qq; n) ≡ p(φ|τ ; n) ∝ L(φ|n) p(φ|τ)

(τ |φ, Qq; n) ∼ G(aq + 0.5 R(P ), bq + 0.5 φ′Pφ)

p(Qq|φ, τ ; n) ≡ p(Qq|τ ; n) =
p(τ |Qq) p(Qq)

∑

l p(τ |Ql) p(Ql)

A marginal posterior for φ can be derived from the joint:

p(φ|n) =
Q

∑

q=1

∫ +∞

0
p(φ, τ, Qq|n) dτ

∝ L(φ|n)
1

Q

Q
∑

p=1

Aq(φ)

where

Aq(φ) =
Γ(aq + 0.5 R(P )) baq

q

Γ(aq) (bq + 0.5 φ′Pφ)aq+0.5 R(P )

The corresponding log-posterior is

log p(φ|n) =
∑

i

ni log πi + log





1

Q

Q
∑

q=1

Aq(φ)



 (9)

with gradient

∂ log p(φ|n)

∂φ
= B′(n − µ) −

1
Q

∑Q
q=1 wq(φ)Aq(φ)

1
Q

∑Q
q=1 Aq(φ)

Pφ (10)

where

wq(φ) =
aq + 0.5 R(P )

bq + 0.5 φ′Pφ
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3 Bivariate density smoothing

Assume that a random sample {(y1k, y2k) : k = 1, . . . , n} of a bivariate random
variable (Y1, Y2) has been observed and that an estimation of the bivariate density
fY1Y2

is of interest.

3.1 Histogram in 2D

The same ideas as in the 1D case can be used successfully. Consider for simplicity
that most of the probability mass is within the rectangle [ymin

1 , ymax
1 ]×[ymin

2 , ymax
2 ].

That region can be subdivided into a large number of cells. Again for sim-
plity, assume that these cells are the rectangles corresponding to the partition
of [ymin

1 , ymax
1 ] and [ymin

2 , ymax
2 ] into, respectively, I and J segments of constant

width ∆1 and ∆2. If (x1i, x2j) and nij denote, respectively, the midpoint and the
number of observations in cell (i, j), then

(N11, . . . , NIJ) ∼ Mult(n; π11, . . . , πIJ)

where
πij =

∫ ∫

cell (i,j)
fY1Y2

(z1, z2) dz1 dz2 ≈ fY1Y2
(x1i, x2j)∆1∆2

Consider two bases of cubic B-splines {b̆k(·) : k = 1, . . . , K} and {bl(·) :
l = 1, . . . , L} associated with equidistant knots on [ymin

1 , ymax
1 ] and [ymin

2 , ymax
2 ].

If (B̆)ik = b̆ik = b̆k(x1i) and (B)jl = bjl = bl(x2j) denote the I × K and J ×
L matrices associated to these bases at their respective bin midpoints, then a
possible model for the I ×J matrix of probabilities (Π)ij = πij is the polytomous
logistic regression

πij =
eηij

eη11 + . . . + eηIJ
(11)

where
ηij =

∑

k

∑

l

b̆ikbjlφkl = (B̆ΦB′)ij .

For identifiability reasons, one should constrain the K × L matrix of regression
parameters (Φ)kl = φkl as πij(Φ) = πij(Φ + a) for any real a. Below, we shall
require that

∑

k

∑

l φkl = 0.
The corresponding log-likelihood, with the identifiability constraint, is

log L(Φ|n) =
∑

i

nij log πij =
∑

N � log(Π) (12)

with gradient

∂l

∂Φ
= B̆

′
(N − nΠ)B (13)

where N is the I × J matrix such that (N)ij = nij and [ ∂l
∂Φ

]k,l = ∂l
∂φkl
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3.2 Roughness prior and associated posterior

Consider the following notation for the K rows and L columns of Φ,

Φ′ = (Φr
1
′, . . . , Φr

K
′) ; Φ = (Φc

1, . . . , Φ
c
L)

respectively. We propose to force smoothness by considering a prior distribution
on the rth order differences of the successive B-splines coefficients associated to
each row and to each column of Φ:

p(Φr
k|τr,k) ∝ exp

{

−
1

2
τr,k Φr

kPrΦ
r
k
′
}

p(Φc
l |τc,l) ∝ exp

{

−
1

2
τc,l Φc

l
′PcΦ

c
l

}

A different roughness penalty coefficient could be used for each row and for col-
umn, as suggested in the previous equation with, for example, τr,k standing for
the penalty associated to the kth row. If this general case is of interest, then
some smooth evolution should also be forced on these penalty coefficients (see
Jullion and Lambert (2005) for spatially adaptive penalties). For most practical
purposes, assuming that τr,k = τr ∀k and τc,l = τc ∀l provides enough flexibility.

Of course, these prior distributions cannot be specified independently as it
concerns the same Φ parameters. Considering them jointly is essential to obtain
the multiplicative constant that involve the penalty parameters. The contribution
of these K + L prior distributions to the posterior can be written as

{

K
∏

k=1

p(Φr
k|τr)

} {

L
∏

l=1

p(Φc
l |τc)

}

∝
{

e−0.5τr

∑

k
Φr

k
PrΦr

k
′
} {

e−0.5τc

∑

l
Φc

l
′PcΦc

l

}

= exp
{

−
1

2
vec (Φ)′ (τr Pr ⊗ IK + τc IL ⊗ Pc) vec (Φ)

}

= exp
{

−
1

2
vec (Φ)′ P vec (Φ)

}

where vec (·) turns a matrix into a vector by stacking its columns, ⊗ is the
Kronecker product and Ir is the identity matrix of size r. Thus, the prior on Φ
is

p(Φ|τr, τc) ∝
√

d(P ) exp
{

−
1

2
vec (Φ)′ P vec (Φ)

}

(14)

where d(P ) denotes the product of non-zero eigenvalues of P . It is a function of
τr and τc. If one denotes the L and K eigenvalues of Pr and Pc by

λr
1 ≥ . . . ≥ λr

R(Pr) > 0, . . . , 0

λc
1 ≥ . . . ≥ λc

R(Pc) > 0, . . . , 0
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then one can show that the eigenvalues of P are

λlk = τrλ
r
l + τcλ

c
k where (l, k) ∈ {1, . . . , L} × {1, . . . , K}

Hence, the number of nonzero eigenvalues of P is

R(P ) = KL − [L −R(Pr)] [K −R(Pc)]

As in the 1D case, many different priors can be used for the penalty coeffi-
cients. The simplest choice is obviously a gamma prior with a large variance, say
τr ∼ G (ar, br) and τr ∼ G (ac, bc) with ar = ac = br = bc = 10−4. The resulting
log-posterior is then

log p(Φ, τr, τc|n) =
∑

N � log(Π)

+
1

2

∑

l,k:λlk 6=0

log(τrλ
r
l + τcλ

c
k) −

1

2
vec (Φ)′ P vec (Φ)

+ (ar − 1) log τr − brτr + (ac − 1) log τc − bcτc (15)

Note that, for computational purposes, it is more convenient to rewrite the kernel
part of the prior:

vec (Φ)′ P vec (Φ) = τrtr (ΦPrΦ
′) + τctr (Φ′PcΦ) (16)

The gradient of the log-posterior is

∂ log p(Φ, τr, τc|n)

∂φ
= B̆

′
(N − nΠ)B − τrΦPr − τcPcΦ (17)

∂ log p(Φ, τr, τc|n)

∂τr
= 0.5

∑

l,k:λlk 6=0

λr
l

τrλr
l + τcλc

k

− 0.5 tr (ΦPrΦ
′) +

ar − 1

τr
− br

∂ log p(Φ, τr, τc|n)

∂τc
= 0.5

∑

l,k:λlk 6=0

λc
k

τrλr
l + τcλc

k

− 0.5 tr (Φ′PcΦ) +
ac − 1

τc
− bc

3.3 Special case: τr = τc

An interesting special case is τr = τc = τ that assumes that the density smooth-
ness is the same along both axes. In that case, simplifications appear in the
roughness prior in Equation (14) as

d(P ) ∝ τR(P )

Hence, the log-posterior becomes

log p(Φ, τ |n) =
∑

N � log(Π) +
R(P )

2
log(τ)

−
τ

2
[tr (ΦPrΦ

′) + tr (Φ′PcΦ)] + (a − 1) log τ − bτ (18)
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with gradient

∂ log p(Φ, τ |n)

∂φ
= B̆

′
(N − nΠ)B − τ(ΦPr + PcΦ) (19)

∂ log p(Φ, τ |n)

∂τ
=

R(P )

2τ
−

1

2
[tr (ΦPrΦ

′) + tr (Φ′PcΦ)] +
a − 1

τ
− b

3.4 Marginal posterior

No closed form can be obtained for the marginal posterior of Φ in the general
case. However, when τr = τc = τ , one can integrate out the roughness penalty
parameter τ , yielding the marginal log-posterior

log p(Φ|n) =
∑

N � log(Π) (20)

−[a + 0.5R(P )] log {b + 0.5[tr (ΦPrΦ
′) + tr (Φ′PcΦ)]}

with gradient

∂ log p(Φ|n)

∂φ
= B̆

′
(N − nΠ)B

−[a + 0.5R(P )]
ΦPr + PcΦ

b + 0.5[tr (ΦPrΦ′) + tr (Φ′PcΦ)]
(21)

4 Extension to higher dimensions

The same ideas as in Sections 2 and 3 can be used successfully in higher di-
mensions. Of course, some care should be devoted to computational aspects to
avoid memory problems. We were careful in the 2D case by computing the linear
predictor using product of matrices, (η)ij = (B̆ΦB′)ij, instead of the equivalent

memory demanding expression based on Kronecker products, (B ⊗ B̆)vec (Φ).
A generalization of this trick to higher dimensions was proposed in Eilers et al.
(2006) with algorithmic details in Currie et al. (2004a, 2006).

If the number of dimensions is d, then the cell probabilities Π and the associ-
ated linear predictor η become d-dimensional arrays of size i1 × . . . × id and the
B-splines basis the Kronecker product B = Bd ⊗ . . . ⊗ B1 (where Br is ir × Kr)
such that

vec (Π)i =
exp[vec (η)i]

∑

r exp[vec (η)r]

vec (η) = Bφ (22)

where φ is a vector of length
∏d

r=1 Kr. Again, an identifiability constraint like
∑

k φk is necessary. Using the ρ operator (Currie et al., 2006) defining the product
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of a i1 ×K1 matrix by a K1 × . . .×Kd array, yielding an array of size K2 × . . .×
Kd × i1, one can rewrite Equation (22) as

η = ρ(Bd, . . . , ρ(B2, ρ(B1, Φ)) . . .)

where Φ is the K1 × . . . × Kd array associated to the vector φ. When d = 2, we
get back

η = ρ(B2, ρ(B1, Φ)) = B1ΦB′
2

The roughness penalty prior becomes

p(Φ|τ1, . . . , τd) ∝
√

d(P ) exp
{

−
1

2
vec (Φ)′ P vec (Φ)

}

where

P = τ1 IKd
⊗ . . . ⊗ IK2

⊗ P1 + τ2 IKd
⊗ . . . ⊗ IK3

⊗ P2 ⊗ IK1

+ . . . + τd Pd ⊗ IKd−1
⊗ . . . ⊗ IK1

and Ki is the size of Pi.
In the special case where τ = τ1 = . . . = τd, we have d(P ) ∝ τR(P ) where

R(P ) =
d

∏

i=1

Ki −
d

∏

i=1

[Ki −R(Pi)]

Again, memory problems can be avoided by a careful implementation of the
penalty prior. If the rotation of the d-dimensional array A of size c1 × . . . × cd

is the d-dimensional array R(A) of size c2 × . . .× cd × c1 obtained by permuting
the indices of A (Currie et al., 2006), then one can write

vec (Φ)′ P vec (Φ) =
∑

{

Φ �
d

∑

i=1

τiΨi

}

(23)

with

Ψi = Rd−i(ρ(Pi, R
i−1(Φ)))

where
∑

(A) denotes the sum of the elements of the array A and � is the obvious
extension of the matrix dot product to arrays. When d = 2, we get back the
expression in Equation (16) as tr (AB) =

∑

A � B when B is symmetric.
The log of the joint posterior is

log p(Φ, τ |N) =
∑

N � log(Π) +
1

2
log d(P )

−
1

2
vec (Φ)′ P vec (Φ) +

d
∑

i=1

[(ai − 1) log τi − bτi] (24)
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where N denotes the i1 × . . . × id array of frequencies and one assumes τi ∼
G (ai, bi).

In the special case where τ = τ1 = . . . = τd, one can show that the gradient
of Equation (24) is

∂ log p(φ, τ |N)

∂φ
= B′[vec (N) − vec (nΠ)] − P vec (Φ)

∂ log p(Φ, τ |N )

∂τ
=

R(P )

2τ
−

1

2τ
vec (Φ)′ P vec (Φ) +

a − 1

τ
− b

The first equation can be rewritten in a computationally efficient way using ar-
rays:

∂ log p(Φ, τ |N)

∂Φ
= ρ(B′

d, . . . , ρ(B′
2, ρ(B′

1, N − nΠ)) . . .) − τ
d

∑

i=1

Ψi

The same is true with the second equation after substitution of Equation (23).
The marginal posterior for Φ can also be derived in the special case:

log p(Φ|N) =
∑

N � log(Π)

− [a + 0.5R(P )] log

{

b + 0.5
∑

[

Φ �
d

∑

i=1

Ψi

]}

with gradient

∂ log p(Φ, τ |N )

∂Φ
= ρ(B′

d, . . . , ρ(B′
2, ρ(B′

1, N − nΠ)) . . .)

− [a + 0.5R(P )]

∑d
i=1 Ψi

b + 0.5
∑

[

Φ �
∑d

i=1 Ψi

]

Note that all the equations of this section generalize the corresponding results
in Sections 2 and 3.

5 The Langevin-Hastings algorithm

5.1 The basic algorithm

Several algorithms based on McMC can be set up to explore the posterior. Con-
ditionally on the penalty parameters, we are left with the well-studied problem
of exploring the posterior of regression parameters in generalized linear models
(see e.g. Gamerman, 1997; Brezger and Lang, 2006). The roughness penalty
parameters, given the spline parameters, have identified conditional posterior
distributions. Hence, a Gibbs sampler is easy to set up.

13



However, given the potentially large number of B-spline parameters, we be-
lieve that the Metropolis-adjusted Langevin algorithm (MALA, Roberts and
Tweedie, 1996) is better suited as it just requires the computation of the log-
posterior and of its gradient at each iteration: no potentially large precision
matrix must be computed as in the Bayesian version of the Iterative Weighted
Least Squares (IWLS) algorithm involved in the last two references. Moreover,
if the marginal posterior of the B-spline parameters is considered, no sampling
from the roughness penalty parameters is required.

The MALA algorithm builds McMC chains with proposals relying on the
gradient of the log posterior distribution at the current state. More precisely, if
p(θ|y) is the posterior distribution and θt ∈ IRK the state of the chain at iteration
t, then the proposal θ for the next state is obtained by a random generation from
the K-variate normal distribution NK(θt + 0.5 δ ∇ log p(θt|y), δIK) where IK is
the K dimensional identity matrix and δ a carefully chosen variance parameter.
This proposal is accepted with probability

α(θt, θ) = min

{

1,
p(θ|y)

p(θt|y)

q(θ, θt)

q(θt, θ)

}

where

q(x, z) = (2πδ)−K/2 exp
[

−
1

2δ

∥

∥

∥z − x − 0.5δ ∇ log p(x|y)
∥

∥

∥

2
]

i.e. θt+1 is set equal to θ if accepted and to θt otherwise.
Roberts and Rosenthal (1998) have shown that the relative efficiency of the

algorithm can be characterized by its overall acceptance rate, independently of
the target distribution. The asymptotic optimal value for that last quantity is
0.57 with acceptance probabilities in the range (0.40, 0.80) still reasonable. The
parameter δ must be tuned to have an acceptance rate in that range.

5.2 Automatic tuning of the Langevin algorithm

An automatic tuning of δ targetting the optimal 0.57 rate is even possible (Haario
et al., 2001; Atchadé and Rosenthal, 2005): at the end of each iteration, set

√

δt+1 = h
(

√

δt + γt

(

α(θt, θ) − 0.57
)

)

where

h(x) =











ε if x < ε
x if x ∈ (ε, A)
A if x > A

,

ε being a small number (say 10−4) and A a large one (say A = 104). These
two constants must be modified if the targetted acceptance rate is not attained.
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The series {γt} is a non-increasing sequence of positive real numbers such that
|γt − γt−1| ≤ t−1. A possible choice for γt is γt = t−1.

In practice, after reparametrization of the posterior (see Section 5.3), we run
the adaptive Langevin algorithm for a few hundreds iteration with δ = 1.652/K1/3

as starting value for the tuning parameter. That value can be derived from
the equations in Roberts and Rosenthal (1998, see Section 2) when the target
posterior is the multivariate normal with identity variance-covariance matrix.
The last value of δt in the so-generated sequence can then be used for the tuning
parameter in the non-adaptive version of the Langevin algorithm to produce the
long chain(s) used for inference.

5.3 Reparametrization of the posterior

If the tuned Langevin algorithm is directly used on the above derived posteriors,
then one will observe large auto- and cross-correlations in the so-generated chain.
This is not surprising as one expects that the B-splines parameters associated
with neighbouring knots will take similar values, as imposed by the smoothness
prior and also probably by the observed data (Lambert and Eilers, 2005). There-
fore, a safe strategy consists in reparametrising the posterior before running the
McMC algorithm. This can be achieved by a rough estimation of the B-splines
parameters using, for example, a frequentist method for fixed and reasonably
chosen values of the roughness penalty parameters. The IWLS algorithm is a
possible choice as it quickly provides the MLEs and the hessian of the parame-
ters in a polytomous logistic regression model. For example, in the 1D case, we
iteratively apply

φt+1 = (B′WtB + τP )−1B′(y − nπt + WtBφt)

where πt = π(φt) and Wt = diag (nπt(1 − πt)). The value of τ can be selected
using cross-validation or an information criterion like the AIC (Eilers and Marx,
1996). The so-obtained MLE φ̂τ and its asymptotic variance-covariance matrix
Vτ suggest reparametrising the posterior using φ′ where

φ = V 1/2
τ φ′ + φ̂τ .

This device considerably reduces the posterior correlation and, hence, the poor
mixing of the chain in the original parametrisation.

Note that one could also be tempted to plug-in a non-diagonal variance-
covariance matrix in the proposal normal distribution of the Langevin algorithm
and to estimate it in an adaptive McMC procedure (Haario et al., 2001; Atchadé,
2005). This is certainly worth trying in situations where no reliable approxima-
tion of the posterior variance-covariance matrix is available, keeping in mind that
this can be iteration (time) consuming before being effective1.

1G.O. Roberts (2005) Current challenges of adaptive Monte Carlo at the workshop
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6 Applications

6.1 The Old Faithful geyser

6.1.1 1D case

The data of interest are the durations of 272 eruptions of the Old Faithful geyser
in Yellowstone National Park, Wyoming, USA. (Härdle, 1991). The interval (1,6)
was split into 50 bins of width = 0.1. A cubic B-splines basis corresponding to
20 equidistant knots was considered on that interval. A chain of length 10,000
was run with a burn-in of 500 iterations to explore the marginal posterior (see
Section 2.3). The obtained fit is reported in Figure 1. In the left part, one can
see the fitted densities corresponding to the estimated posterior mean (solid line)
of φ and to the kernel density estimate (dashed line) with a bandwidth selected
using a pilot estimation of derivatives (Sheather and Jones, 1991). The right part
of the graph shows the fitted density (solid line) together with the 90% pointwise
credible interval. It reveals the rather large uncertainty inherent in a density
estimate. Note that (global) credibile envelopes can also be computed.

6.1.2 2D case

The data of interest now are the waiting times between and durations of 272
eruptions of the Old Faithful geyser. The waiting time and the duration axes
were both divided into 50 bins on (35,105) and (1,6) respectively. Twenty-one
equidistant knots were considered on both axes, yielding 529 spline parameters.
Two different roughness penalty parameters were allowed, one for each axis (see
Section 3.2). A chain of length 20,000 was generated after a burn-in of 500
iterations.

A graphical represensation of the fitted density is available on Figure 2. The
left part shows the scatterplot together with the contours of the fitted density
rescaled to be 1 at its maximum ; the right part displays the fitted bivariate
density. The corresponding marginal densities are in Figure 3: the one corre-
sponding to Duration is nearly identical to that obtained in Section 6.1.1 with
the 1D approach, see Figure 1. Note that differences exist when one forces the
two roughness penalty parameters to be the same.

6.2 Suicide treatment data

These data give the length of 86 spells of psychiatric treatments in a suicide
study (Silverman, 1986). They were used by Eilers and Marx (1996) to show
that the frequentist P-splines density estimate can be free from the boundary

Bayesian inference with biomedical applications, 17 November 2005, Brussels, Belgium.
http://www.stat.ucl.ac.be/ lambert/BiostatWorkshop2005/
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Figure 1: Durations of 272 eruptions of the Old Faithful geyser. Left graph:
histogram and fitted density corresponding to the posterior mean (solid line) of
φ and to the kernel density estimate (dashed line). Right graph: fitted density
(solid line) corresponding to the posterior mean of φ together with the 90%
pointwise credible interval and to the kernel density estimate (dashed line).

effect appearing with kernel smoothers, if the domain is properly chosen. Not
surprisingly, this is confirmed with the Bayesian density estimate, see Fig. 4,
where 100 bins and 20 knots were taken on (0, 1000); a chain of length 10, 000
with a burn-in of 500 was built to explore the marginal posterior (see Section
2.3). Provided that the lower limit of the domain is chosen equal to the smallest
possible value for a duration (here 0) no boundary effect shows up.

6.3 Graphical summary of Monte Carlo simulations

In this subsection we apply our density smoother, which use McMC simulations
to visualize the output of a another simulation. Graphical summaries of Monte
Carlo generations most often rely on 1D estimates of marginal densities. As an
example, consider the bioassay experiment reported in Gelman et al. (2004, pp.
88-93, 104-106) giving the number of deaths yi observed in batches of ni animals
exposed to different possible log-doses xi of a chemical (see Table 1). These data
were modelled using logistic regression

y|θi ∼ Bin(ni, θi)
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Figure 2: Waiting times between and durations of 272 eruptions of the Old
Faithful geyser. Left part: scatterplot and contours of the fitted density (re-
scaled to be 1 at its maximum); right part: fitted bivariate density.

log-dose xi Number of Number of
(log g/ml) animals ni deaths yi

-0.86 5 0
-0.30 5 1
-0.05 5 3
0.73 5 5

Table 1: Bioassay data
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Figure 3: Waiting times between and durations of 272 eruptions of the Old
Faithful geyser: marginal densities corresponding to the fitted bivariate density.
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Figure 4: Suicides data: fitted density estimate.
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log θi

1−θi
= α + βxi ; p(α, β) ∝ 1

where θi denotes the probability of death at log-dose xi.
A random sample {(αt, βt) : t = 1, . . . , 10000} from the joint posterior for

(α, β) was generated using the Metropolis-Hastings algorithm: the correspond-
ing chain can be visualized using CODA, see Fig. 5. Alternatively, the marginal
density estimates can be computed using the Bayesian method described in Sec-
tion 2 with, for α and β, 50 bins and 20 equidistant knots on [−3, 8] and [−5, 45],
respectively. Figure 6 shows the autocorrelation of the Markov chain for the
slope of the regression line. Interpreting the generated chain as an independent
sample of size 10, 000 gives the potentially misleading density estimate in the
middle part of Figure 6. If, instead, the estimates are built on the thinned sam-
ples obtained by taking every 20th element of the chain (as suggested by the
autocorrelation function estimate given in the left part of the same figure), one
obtains the estimates given in the right part of Figure 6.

For this small data set the joint posterior p(α, β|y, n, x) can computed nu-
merically: some contours are plotted on the left part of Fig. 7 (see also Fig. 3.4
in Gelman et al. (2004)). Alternatively, the bivariate posterior density can be
estimated from the thinned chain {(α1+20j , β1+20j) : j = 0, . . . , 499} using the
method presented in Section 3 with the same bins and knots as in the 1D case.
Two different roughness penalty parameters were allowed, one for each axis (see
Section 3.2). A chain of length 20,000 was generated after a burn-in of 1,000
iterations. The fitted contours are given on the right part of Fig. 7: they are in
good agreement with the exact ones (in the left part of Fig. 7).

6.4 Quantile regression

A nice application of density estimation is quantile regression. If an estimate
of the joint density fY1Y2

is available, then it is straightforward to derive the
estimates of the corresponding marginal and conditional densities from their re-
spective definitions.

In addition, one can derive the conditional distribution functions FY1|Y2=y2
,

FY2|Y1=y1
by integrating the corresponding density estimate. These can be in-

verted to finally obtain estimates of the conditional quantile functions.
For the Old Faithful data we illustrate this with conditional quantiles of

Duration given Waiting time. The deciles are plotted in Figure 8: as expected,
these are smooth and do not cross as sometimes happens with some nonparamet-
ric methods.

Pointwise credible interval for these deciles can be obtained from the generated
chain: the 80% credible intervals are plotted in Figure 9 for selected deciles.
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Figure 5: Bioassay data: graphical visualization, using CODA, of a chain of
length 10,000 drawn from the posterior p(α, β|y).
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Figure 6: Bioassay data. Left part: autocorrelation function of the Markov chain
for the slope of the regression line. Middle part: Bayesian density estimate of
when assuming 10000 independent observation. Right part: Bayesian density
estimate after thinning (keeping every 20th simulated value), to break the auto-
correlation.
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Figure 7: Bioassay data. Exact (left part) and estimated (right part) contours of
p(α, β|y, n, x) rescaled to be one at its maximum.
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Figure 8: Waiting times between and durations of 272 eruptions of the Old
Faithful geyser: conditional deciles of Duration for given Waiting time.
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Figure 9: Waiting times between and durations of 272 eruptions of the Old Faith-
ful geyser: 80% pointwise credible intervals of the 2nd, 5th and 8th conditional
deciles of Duration for given Waiting time.
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6.5 Implementation

Bayesian computation was performed using an R program interfacing a routine
in C that implements the Langevin algorithm. It is extremely quick in the 1D
case with, for the geyser data, 0.6 seconds required to build a chain of length
10,000 (see Section 6.1.1) on a Pentium IV 3.0 GHz. In the 2D example where
21 equidistant knots along both axes were considered (yielding 531 parameters,
including the two roughness penalty parameters), it took about 5.3 seconds per
1,000 runs. This reduces to 1.1 seconds with 10 knots in each direction.

7 Discussion

We feel that our penalized spline approach to Bayesian density estimation has
many attractive properties. It is effective and handles higher dimensions in a
unified way. Computation time is a few seconds for one-dimensional application,
including the determination of the optimal amount of smoothing, making this
smoother attractive for everyday use. Optimal smoothing of a two-dimensional
density takes around one minute.

Besides being interesting in its own right, Bayesian estimation of densities us-
ing McMC methods is a practically worthwhile alternative to existing frequentist
approaches (where these exist) with, as a great addition, the availability of the
generated chain(s) to estimate and produce credible regions of any function of
the density. Moreover, the same principles can be used, whatever the dimension
of the problem.

A interesting application is smooth quantile regression, formulated as a by-
product of two-dimensional density estimation. It was illustrated in the case
where a single continuous regressor is available: the so-obtained curves do not
cross as it is often the case with nonparametric methods. In addition, credible
regions can be constructed using the generated chain(s). Extension to larger
dimensions (smooth quantile surfaces, based on smooth 3D densities) is feasible
and will be reported elsewhere.

The basis of our model is a generalized linear model using (tensor products)
of penalized splines. This means that extension to other non-normal data, like
binary fields (using a logit link function and a binomial distribution) or variance
fields (using a log link function and the Gamma distribution) is straightforward.
See also Lambert and Eilers (2005) for an application in advanced survival anal-
ysis.
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