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Université de Toulouse I, GREMAQ, France

daouia@cict.fr

Jean-Pierre Florens†
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Abstract

Nonparametric estimators of the upper boundary of the support of a multivariate
distribution are very appealing because they rely on very few assumptions. But in
productivity and efficiency analysis, this upper boundary is a production (or a cost)
frontier and a parametric form for it allows for a richer economic interpretation of
the production process under analysis. On the other hand, most of the parametric
approaches rely on often too restrictive assumptions on the stochastic part of the model
and are based on standard regression techniques fitting the shape of the center of the
cloud of points rather than its boundary. To overcome these limitations, Florens and
Simar (2005) propose a two-stage approach which tries to capture the shape of the cloud
of points near its frontier by providing parametric approximations of a nonparametric
frontier. In this paper we propose an alternative method using the nonparametric
quantile-type frontiers introduced in Aragon, Daouia and Thomas-Agnan (2005) for the
nonparametric part of our model. These quantile-type frontiers have the superiority of
being more robust to extremes. Our main results concern the functional convergence
of the quantile-type frontier process and its uniform complete convergence. Then
we provide convergence and asymptotic normality of the resulting estimators of the
parametric approximation. We also improve some convergence results obtained by
Florens and Simar. The approach is illustrated through simulated and real data sets.
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1 Basic Concepts and Notations

Let Ψ be the support of the joint distribution of a random vector (X, Y ) ∈ R
p
+ ×R+ defined

on the probability space (Ω,A, P ). Consider the problem of estimating the upper boundary

of Ψ from a sample {(X1, Y1), · · · , (Xn, Yn)} of independent random vectors with the same

distribution as (X, Y ). If X = {x ∈ R
p
+| Y (x) 6= ∅} where Y (x) = {y ∈ R+| (x, y) ∈ Ψ},

then define ϕ(x) = maxY (x) for any x ∈ X . The upper boundary of Ψ can be then defined

as the set {(x, ϕ(x))| x ∈ X}. This boundary is assumed to be nondecreasing in the sense

that the frontier function ϕ(x) is nondecreasing1 in x.

This kind of problem appears naturally to be useful when analyzing production perfor-

mance of firms, where X represents the vector of inputs (resources of production) and Y is

the output (a quantity of produced goods). In this context, ϕ(x) is the production frontier,

i.e., the maximal achievable level of output for a firm working at the level of inputs x. The

production efficiency of a firm operating at the level (x, y) can be then measured by the rel-

ative comparison of its output y with the reference frontier ϕ(x). These methods have been

widely applied to examine efficiency in a variety of industries; see Lovell (1993) and Seiford

(1996) for comprehensive bibliographies of these applications. Aside from the production

setting, the problem of estimating monotone boundaries also naturally occurs in portfolio

management. In capital asset pricing models (CAPM), the objective is to analyze the per-

formance of investment portfolios. Risk and average return on a portfolio are analogous to

inputs and outputs in models of production; in CAPM, the boundary of the attainable set

of portfolios gives a benchmark relative to which the efficiency of a portfolio can be mea-

sured. These models were developed by Markovitz (1959) and others; Sengupta (1991) and

Sengupta and Park (1993) provide links between CAPM and nonparametric estimation of

frontiers.

We will follow the probabilistic formulation of the frontier problem proposed by Cazals,

Florens and Simar (2002, CFS hereafter). Let us denote by F (y|x) = F (x, y)/FX(x) the

nonstandard2 conditional distribution function of Y given X ≤ x, where F is the joint

distribution function of (X, Y ) and FX(x) = F (x,∞). From now on we assume that x ∈ R
p
+

1For two vectors x and x
′ in Rp the inequality x ≤ x

′ has to be understood componentwise. A real
valued function r on Rp is then said to be nondecreasing with respect to this partial order if x ≤ x

′ implies
r(x) ≤ r(x′).

2We use the word “nonstandard” to focus on the unusual condition X ≤ x in place of the more common
X = x.
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is such that FX(x) > 0. The monotone upper surface of Ψ can be then characterized through

the graph of the frontier function

ϕ(x) = inf{y ∈ R+|F (y|x) = 1}.

This value represents the upper boundary of the support of the nonstandard conditional

probability measure of Y given X ≤ x.

In our approach, we focus on a deterministic frontier model where the support Ψ con-

tains all the observations (Xi, Yi) with probability 1. Parametric approaches have been first

proposed in the econometric litterature (this includes, among others, Aigner and Chu, 1968

and Greene, 1980). Here we assume the frontier function ϕ(x) can be written as a specified

analytical function ϕθ(x) depending on a finite number of parameters θ ∈ Rk. We denote

this parametric model by

Yi = ϕθ(Xi) − Ui with Ui ≥ 0 a.s., (1.1)

If we specify an appropriate stochastic models for the error terms Ui, Greene (1980) proposes

estimators of θ based on OLS (shifted or corrected to take into account for the positiveness

of the error term) or by MLE. On one hand parametric models are very appealing because

the parameters are easy to estimate and to interpret but on the other hand their properties

rely on restrictive assumptions on the stochastic part of the model (parametric specification

of the law of U , homoscedasticity,. . . ) and they are based on standard regression tools which

capture the shape of the cloud of points {(X1, Y1), · · · , (Xn, Yn)} near its center rater than

near its optimal boundary (see Florens and Simar, 2005 for a careful discussion).

To overcome these drawbacks, Simar (1992) proposed (without analyzing the statistical

properties of the obtained estimators) to identify in a first step, where is located the upper

frontier by using a nonparametric method, then in a second step, to adjust the parametric

model to the obtained nonparametric frontier. From an economic point of view, the first

step can be viewed as a kind of “filtering” for eliminating from the sample clearly inefficient

units which certainly do not provide substantial information to analyse how to transform

efficiently inputs into output.

We can use in this first step filtering the flexible nonparametric Free Disposal Hull (FDH)

estimator (Deprins, Simar and Tulkens, 1984),

ϕ̂n(x) = inf{y ∈ R+|F̂n(y|x) = 1} = max
i|Xi≤x

Yi,

where F̂n(y|x) = F̂n(x, y)/F̂X,n(x), with F̂n(x, y) = (1/n)
∑n

i=1 1(Xi ≤ x, Yi ≤ y) and

F̂X,n(x) = F̂n(x,∞). The asymptotic of ϕ̂n(x) was first derived by Korostolev, Simar and
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Tsybakov (1995) for the consistency and by Park, Simar and Weiner (2000) for the asymp-

totic sampling distribution. The drawback of the FDH estimator lies in the fact that it is,

by construction, very sensitive to extreme values. CFS have proposed alternatives which are

shown to be more robust than the FDH estimator. They are based on the concept of partial

order-m expected frontiers defined as ϕm(x) = E(max(Y 1, . . . , Y m) | X ≤ x), where for

an integer m ≥ 1, (Y 1, . . . , Y m) are m independent identically distributed random variables

generated by the distribution of Y given X ≤ x. It turns out that

ϕm(x) =

∫ ϕ(x)

0

(1 − [F (y|x)]m)dy,

which can be nonparametrically estimated by

ϕ̂m,n(x) =

∫ bϕn(x)

0

(1 − [F̂n(y|x)]m)dy.

The order m can be viewed as a trimming parameter which tunes the robustness of the

estimator since, as pointed in CFS, when m → ∞, ϕm(x) converges to the full frontier ϕ(x)

and ϕ̂m,n(x) converges to the FDH estimator ϕ̂n(x).

Florens and Simar (2005) provide the asymptotic properties of the resulting estimators

of θ when these two nonparametric estimators of the frontier are used in the first “filtering”

stage. In this paper we propose an alternative method using the nonparametric quantile-

type frontiers introduced in Aragon, Daouia and Thomas-Agnan (2002). The interest is that

these quantile-type estimators are more robust to extremes than the CFS order-m estimators

as established in Daouia and Ruiz-Gazin (2003).

Similarly to the order-m partial frontier, the order-α partial frontier function increases

w.r.t. the continuous order α ∈ [0, 1] and converges to the full frontier ϕ(x) as α ր 1. It

is defined, for a given level x, by the conditional α-quantile of the distribution of Y given

X ≤ x,

qα(x) := F−1(α|x) = inf{y ∈ R+|F (y|x) ≥ α}.

A simple estimator of qα(x), which increases and converges to the FDH ϕ̂n(x) as α ր 1, is

easily derived by inverting the empirical version F̂n(y|x) of F (y|x),

q̂α,n(x) := F̂−1
n (α|x) = inf{y ∈ R+|F̂n(y|x) ≥ α}.

This estimator is very fast to compute, very easy to interpret and satisfies very similar sta-

tistical properties to those of the CFS estimator. In summary, it converges at the rate
√

n,

is asymptotically unbiased and normally distributed. Moreover, when the order α is consid-

ered as a function of n such that n(p+2)/(p+1) (1 − α(n)) → 0 as n → ∞, q̂α(n),n(x) estimates
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the true frontier function ϕ(x) and shares the same asymptotic distribution (Weibull) of the

FDH estimator ϕ̂n(x), as described in Park et al. (2000).

The paper is organized as follows. Section 2 is our basic contribution: it extends previous

results of convergence of q̂α,n(x), by establishing functional convergence as
√

n(q̂α,n − qα) be-

ing a process indexed by x as well as its uniform complete convergence. Section 3 proposes

then, in the spirit of Florens and Simar (2005), the parametric approximations of the quan-

tile frontier and develops the asymptotic properties of the resulting estimators, for linear

parametric model as well as for general parametric models. It also provides new results for

estimating the parametric model for the full frontier itself, by using the more robust order-m

or order-α partial frontiers in the first step. Indeed it establishes the complete convergence

of the estimators of the parametric models for the full frontier, by chosing m and α as ap-

propriate functions of n. Section 4 illustrates and compare the different approaches with

simulated and real data sets. Section 5 concludes.

2 Convergence Theorems of Quantile-type Frontiers

Throughout this section the order α is arbitrarily fixed in ]0, 1[ and K ⊂ R
p
+ is an arbitrarily

fixed set such that infx∈K FX(x) > 0. The support of Y is assumed to have a finite upper

boundary ν > 0. The domain D ⊂ Rp+1 is used to denote any fixed compact subset which

contains both K × [−ν, ν] and the support Ψ of (X, Y ).

2.1 Functional Convergence

Let x be a fixed value such that FX(x) > 0. Assume that the conditional distribution function

F (·|x) is differentiable at qα(x) with derivative f(qα(x)|x) > 0. Aragon et al. (2005) have

proved

q̂α,n(x) − qα(x) =
αF̂X,n(x) − F̂n(x, qα(x))

f(qα(x)|x)FX(x)
+ Rα

n(x) (2.1)

where the remainder term Rα
n(x) becomes negligible as n → ∞. More precisely, they

have shown
√

nRα
n(x) = op(1) as n → ∞. This result has been improved in Daouia

(2005) who extends (2.1) to a Bahadur-type asymptotic representation, namely Rα
n(x) =

O(n−3/4(log n)1/2(log log n)1/4) as n → ∞, with probability 1. He also proves the functional

convergence of
√

n(q̂α,n(x)−qα(x)) as a process indexed by the order α in the space L∞(]0, 1[)

of bounded functions on ]0, 1[. However, Daouia (2005) raises the question of finding the

asymptotic limit of
√

n(q̂α,n(x) − qα(x)) as a process indexed by x ∈ Rp. In this section we

address this issue in our basic Theorem 2.1 bellow.
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To explain the rationale behind this theorem, define the domain G of distribution func-

tions G(·, ·) on R
p
+ × R+ whose supports are also contained in D and such that

G(x,∞) > 0 ∀x ∈ K, inf{y ≥ 0| G(∞, y) = 1} ≤ ν.

For any G ∈ G and any x ∈ K, let G−1(α|x) := inf{y ≥ 0| G(y|x) ≥ α} denotes the αth

quantile of the conditional distribution function G(·|x) = G(x, ·)/G(x,∞) ≡ G(x, ·)/G(x, ν).

Then, for any G ∈ G and any x ∈ K, we have

0 ≤ G−1(α|x) ≤ G−1(1|x) ≤ inf{y ≥ 0| G(∞, y) = 1} ≤ ν.

Hence the conditional quantile transformation G−1(α|·) : x 7→ G−1(α|x) as a map K → [0, ν]

is bounded on K and so, we write G−1(α|·) ∈ L∞(K). Now consider φ : G 7→ G−1(α|·) as a

map G ⊂ L∞(D) −→ L∞(K).

Lemma 2.1. Assume that F (·|x) is differentiable for any x ∈ K, with derivative f(·|x) such

that sup(x,y)∈K×R
f(y|x) < ∞, infx∈K f(qα(x)|x) > 0 and the differentiability of F (·|x) at

qα(x) is uniform in x ∈ K, i.e.,

sup
x∈

∣∣∣∣
F (qα(x) + ξ|x) − F (qα(x)|x)

ξ
− f(qα(x)|x)

∣∣∣∣ → 0 as ξ → 0.

Then φ is Hadamard-differentiable at F ∈ G tangentially to the set C(D) of continuous

functions on D. The derivative is the map φ′
F : h 7→ φ′

F (h) as a map C(D) −→ L∞(K),

where

φ′
F (h) : x 7→ αh(x, ν) − h(x, qα(x))

f(qα(x)|x)FX(x)
. (2.2)

Proof. Let ht → h uniformly in L∞(D), where h ∈ C(D) and F +tht ∈ G for all small t > 0.

Write qαt for φ(F + tht). Following the definition of the Hadamard differentiability (see van

der Vaart (1998), p.296), we shall show that (qαt(x) − qα(x))/t converges to (αh(x, ν) −
h(x, qα(x)))/f(qα(x)|x)FX(x) as t ց 0, uniformly in x ∈ K. By the definition of φ, we have

for every x ∈ K and every ε > 0,

(F + tht)(qαt(x) − ε|x) < α ≤ (F + tht)(qαt(x)|x).

We choose ε = εt = o(t) as t ց 0. Because G(x,∞) = G(x, ν) > 0 for any G ∈ G and any

x ∈ K, we have (F + tht)(x, qαt(x) − εt) < α(F + tht)(x, ν) ≤ (F + tht)(x, qαt(x)). Then

F (qαt(x) − εt|x) +
tht(x, qαt(x) − εt) − αtht(x, ν)

FX(x)
< α (2.3)

≤ F (qαt(x)|x) +
tht(x, qαt(x)) − αtht(x, ν)

FX(x)
.
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Since εt ց 0 as t ց 0, εt < ν for all t small enough, and so qαt(x) − εt ∈ [−ν, ν] for every

x ∈ K and all t sufficiently small. Therefore supx∈K |ht(x, qαt(x) − εt) − h(x, qαt(x) − εt)| ≤
sup(x,y)∈K×[−ν,ν] |ht(x, y) − h(x, y)|, for all small t. Since ht converges uniformly to h on

K × [−ν, ν] ⊂ D, we obtain tht(x, qαt(x)− εt) = th(x, qαt(x)− εt) + o(t) uniformly in x ∈ K.

Likewise, tht(x, qαt(x)) = th(x, qαt(x)) + o(t) and −αtht(x, ν) = −αth(x, ν) − αo(t), where

the o(t) terms are uniform in x ∈ K. By using the fact that sup(x,y)∈K×R
f(y|x) < ∞, we

also have F (qαt(x) − εt|x) = F (qαt(x)|x) + O(εt), uniformly in x ∈ K. Hence

F (qαt(x)|x) + O(εt) +
th(x, qαt(x) − εt) + o(t) − αth(x, ν) − αo(t)

FX(x)
< α

≤ F (qαt(x)|x) +
th(x, qαt(x)) + o(t) − αth(x, ν) − αo(t)

FX(x)
.

By replacing α in the middle of inequalities by F (qα(x)|x), we get

− th(x, qαt(x)) + o(t) − αth(x, ν) − αo(t)

FX(x)
≤ F (qαt(x)|x) − F (qα(x)|x) (2.4)

< −O(εt) −
th(x, qαt(x) − εt) + o(t) − αth(x, ν) − αo(t)

FX(x)
.

Let us show that qαt(x) → qα(x) uniformly in x ∈ K, as t ց 0. In view of the uniform

differentiability, in x ∈ K, of F (·|x) at qα(x), there exists a ξ0 > 0 such that for all |ξ| < ξ0

we have supx∈K

∣∣∣F (qα(x)+ξ|x)−α
ξ

− f(qα(x)|x)
∣∣∣ < infx∈K f(qα(x)|x)/2. Let 0 < δ < ξ0. Then

infx∈K f(qα(x)|x)/2 < F (qα(x)+δ|x)−α
δ

and infx∈K f(qα(x)|x)/2 < α−F (qα(x)−δ|x)
δ

, for all x ∈ K.

Whence supx∈K F (qα(x) − δ|x) < α < infx∈K F (qα(x) + δ|x). Let ∆δ = [infx∈K F (qα(x) +

δ|x) − α] ∧ [α − supx∈K F (qα(x) − δ|x)]. We have

sup
x∈K

|ht(x, qαt(x)) − αht(x, ν)|
FX(x)

≤
[
sup
x∈K

|ht(x, qαt(x)) − h(x, qαt(x))| + sup
x∈K

|h(x, qαt(x))|

+ sup
x∈K

|ht(x, ν) − h(x, ν)| + sup
x∈K

|h(x, ν)|
]

/ inf
x∈K

FX(x).

The fact that qαt(x) ∈ [0, ν], for every x ∈ K, implies that supx∈K |h(x, qαt(x))| is majored

by sup(x,y)∈K×[0,ν] |h(x, y)| which is finite since h is bounded on K × [−ν, ν] ⊂ D. Likewise

supx∈K |h(x, ν)| is finite. Hence, the uniform convergence of ht to h yields

sup
x∈K

|tht(x, qαt(x)) − αtht(x, ν)|
FX(x)

−→ 0 as t ց 0. (2.5)

Since qαt(x) − εt ∈ [−ν, ν] for every x ∈ K and all small t, supx∈K |h(x, qαt(x) − εt)| is

majored by sup(x,y)∈K×[−ν,ν] |h(x, y)| which is finite since h ∈ L∞(D). Thus, we obtain in the

same way as for (2.5) that

sup
x∈K

|tht(x, qαt(x) − εt) − αtht(x, ν)|
FX(x)

−→ 0 as t ց 0. (2.6)
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Regarding (2.5) and (2.6), there exists tδ > 0 such that for all t < tδ and for every x ∈ K,

F (qα(x) − δ|x) ≤ α − ∆δ <

α − tht(x, qαt(x)) − αtht(x, ν)

FX(x)
and α − tht(x, qαt(x) − εt) − αtht(x, ν)

FX(x)

< α + ∆δ ≤ F (qα(x) + δ|x).

By using the inequalities (2.3), we get F (qα(x) − δ|x) < F (qαt(x)|x) and F (qαt(x) − εt|x) <

F (qα(x) + δ|x). It follows by the monotonicity of F (·|x) that −δ < qαt(x) − qα(x) < δ + εt

uniformly in x ∈ K, and thus we conclude that

sup
x∈K

|qαt(x) − qα(x)| −→ 0 as t ց 0. (2.7)

It can be then easily seen from the uniform differentiability of F (·|x) at qα(x) that

sup
x∈K

∣∣∣∣
F (qαt(x)|x) − F (qα(x)|x)

qαt(x) − qα(x)
− f(qα(x)|x)

∣∣∣∣ −→ 0 as t ց 0. (2.8)

This yields F (qαt(x)|x) − F (qα(x)|x) = (qαt(x) − qα(x))f(qα(x)|x) + (qαt(x) − qα(x))o(1),

uniformly in x ∈ K. Therefore

− (qαt(x) − qα(x))

tf(qα(x)|x)
o(1) − th(x, qαt(x)) + o(t) − αth(x, ν) − αo(t)

tf(qα(x)|x)FX(x)
≤ (qαt(x) − qα(x))

t

< −(qαt(x) − qα(x))

tf(qα(x)|x)
o(1) − O(εt)

tf(qα(x)|x)
− th(x, qαt(x) − εt) + o(t) − αth(x, ν) − αo(t)

tf(qα(x)|x)FX(x)
.

Thus we arrive at

sup
x∈K

∣∣∣∣
qαt(x) − qα(x)

t
− αh(x, ν) − h(x, qα(x))

f(qα(x)|x)FX(x)

∣∣∣∣ ≤
1

infx∈K f(qα(x)|x)FX(x)
(2.9)

×
(

sup
x∈K

|h(x, qαt(x) − εt) − h(x, qα(x))| + sup
x∈K

|h(x, qαt(x)) − h(x, qα(x))| + o(t)

t

)

+
1

infx∈K f(qα(x)|x)

(
sup
x∈K

|qαt(x) − qα(x)|
t

o(1) +
O(εt)

t

)
.

Because h is uniformly continuous on the compact D and εt → 0, it follows from (2.7) that

sup
x∈K

|h(x, qαt(x)) − h(x, qα(x))| → 0, sup
x∈K

|h(x, qαt(x) − εt) − h(x, qα(x))| → 0 (2.10)

as t ց 0. Now, let us show that supx∈K |qαt(x) − qα(x)|/t is bounded as t ց 0. It can be

easily seen from (2.4) that

inf
x∈K

∣∣∣∣
F (qαt(x)|x) − F (qα(x)|x)

qαt(x) − qα(x)

∣∣∣∣ × sup
x∈K

|qαt(x) − qα(x)|
t

(2.11)

≤ O(εt)

t
+

1

infx∈K FX(x)

[
sup
x∈K

|h(x, qαt(x)) − h(x, qα(x))| + o(t)

t
+ sup

x∈K
|h(x, ν)|

+ sup
x∈K

|h(x, qα(x))| + sup
x∈K

|h(x, qαt(x) − εt) − h(x, qα(x))|
]

.
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Since qα(x) ∈ [0, ν] for every x ∈ K, supx∈K |h(x, qα(x))| is majored by sup(x,y)∈D
|h(x, y)|

which is finite. Likewise supx∈K |h(x, ν)| is finite. Furthermore, we have by (2.8),

inf
x∈K

∣∣∣∣
F (qαt(x)|x) − F (qα(x)|x)

qαt(x) − qα(x)

∣∣∣∣ −→ inf
x∈K

f(qα(x)|x) > 0 as t ց 0.

Hence, by using these results in conjunction with (2.10) and (2.11), we get

qαt(x) − qα(x) = O(t), uniformly in x ∈ K. (2.12)

Finally, by combining (2.9), (2.10) and (2.12), we obtain the desired uniform convergence in

x ∈ K of (qαt(x) − qα(x)) /t to (αh(x, ν) − h(x, qα(x))) /f(qα(x)|x)FX(x), as t ց 0. �

The empirical process
√

n(F̂n − F ) converges in distribution in L∞(R
p+1

) to F, a p + 1

dimensional F -Brownian bridge (see , e.g., van der Vaart and Wellner, 1996, p. 82). F is

a Gaussian process with zero mean and covariance function E(F(t1)F(t2)) = F (t1 ∧ t2) −
F (t1)F (t2), for all t1, t2 ∈ R

p+1
. By making use of this functional convergence and applying

the functional delta method in conjunction with Lemma 2.1, we can easily prove the main

result of this section.

Theorem 2.1. Under the conditions of Lemma 2.1, if furthermore F is continuous, then

the conditional empirical quantile process
√

n(q̂α,n − qα), indexed by x ∈ K, converges in dis-

tribution in L∞(K) to φ′
F (F), a centered Gaussian process with covariance function defined,

for any x1, x2 ∈ K, by

Γα(x1, x2) =
{[

f(qα(x1)|x1)FX(x1)
] [

f(qα(x2)|x2)FX(x2)
]}−1 × (2.13)

{
α2FX(x1 ∧ x2) − αF (x1 ∧ x2, qα(x2)) − αF (x1 ∧ x2, qα(x1)) + F (x1 ∧ x2, qα(x1) ∧ qα(x2))

}
.

Proof. Since
√

n(F̂n−F ) converges in distribution to the F -Brownian bridge F in L∞(R
p+1

)

and since L∞(R
p+1

) ⊂ L∞(D), we obtain in view of Lemma 18.13 of van der Vaart (1998,

p.261) that
√

n(F̂n − F ) also converges in distribution to F in L∞(D). Because F ∈ C(D),

the sample paths of the F -Brownian bridge are continuous on D.

On the other hand, by Lemma 2.1, the map φ : G ⊂ L∞(D) −→ L∞(K) is Hadamard-

differentiable at F tangentially to C(D). Thus, the functional delta method (see Theorem

20.8 of van der Vaart, 1998, p.297) can be applied. It implies that
√

n(φ(F̂n) − φ(F )) =
√

n(q̂α,n − qα) converges in distribution to φ′
F (F) in L∞(K). Since the process F is Gaussian

and the operator φ′
F is linear, the limiting process φ′

F (F) is Gaussian with zero mean and

covariance function given by

Γα(x1, x2) = E

[
αF(x1, ν) − F(x1, qα(x1))

f(qα(x1)|x1)FX(x1)
× αF(x2, ν) − F(x2, qα(x2))

f(qα(x2)|x2)FX(x2)

]
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for every x1, x2 ∈ K. �

Under the conditions of Lemma 2.1, the remainder term Rα
n(x) of (2.1), considered as a

process indexed by x ∈ K, can be expressed in the following way

√
nRα

n =
√

n (q̂α,n − qα) − φ′
F

(√
n(F̂n − F )

)
(2.14)

where φ′
F (h) is described in (2.2) for any h ∈ L∞(R

p+1
). Because the linear operator φ′

F

is continuous from L∞(R
p+1

) into L∞(K), it follows from the continuous mapping theorem

that the process φ′
F

(√
n(F̂n − F )

)
, indexed by x ∈ K, converges in distribution to the tight

Gaussian process φ′
F (F) in L∞(K).

Therefore, according to Theorem 1.5.4 of van der Vaart and Wellner (1996, p.35), both

processes φ′
F

(√
n(F̂n − F )

)
and

√
n (q̂α,n − qα) are asymtotically tight under the conditions

of Theorem 2.1. The difference process
√

nRα
n, given by (2.14), is then asymtotically tight

under the same conditions (see, e.g., Theorem 1.5.6 of van der Vaart and Wellner, p.36).

Moreover, its marginals (
√

nRα
n(x1), · · · ,

√
nRα

n(xr)) converge in probability to 0 ∈ Rr, for

every x1, · · · , xr ∈ K. Thus the nuisance process
√

nRα
n, indexed by x ∈ K, converges in

distribution to the process zero in L∞(K) in view of the second part of Theorem 1.5.4 of van

der Vaart and Wellner (1996). Since the map g 7→ supx∈K |g(x)| from L∞(K) into R is con-

tinuous with respect to the supremum norm, the continuous-mapping theorem immediately

implies the following result.

Corollary 2.1. Under the conditions of Theorem 2.1, we have

sup
x∈K

√
n|Rα

n(x)| P−→ 0 as n → ∞.

This corollary will also serve our purposes in Section 3 to prove the asymptotic normality

of the resulting “semi-parametric” estimators.

2.2 Uniform Complete Convergence

First, by using the same technique of proof of Lemma 1 of Csörgő and Révész (1978, p. 888),

it is easy to prove the following preliminary result.

Lemma 2.2. Let κ(x) := sup{y ≥ 0|F (y|x) = 0} and assume that F (·|x) is twice differen-

tiable on ]κ(x), ϕ(x)[ for any x ∈ K, with first derivative f(·|x) > 0 and second derivative

f ′(·|x). Assume furthermore that for some γ > 0

sup
x∈K

sup
κ(x)<y<ϕ(x)

F (y|x)(1 − F (y|x))
|f ′(y|x)|
f 2(y|x)

≤ γ. (2.15)
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Then, for any x ∈ K and any α1, α2 ∈]0, 1[,

f(qα1
(x)|x)

f(qα2
(x)|x)

≤
{

α1 ∨ α2

α1 ∧ α2

1 − (α1 ∧ α2)

1 − (α1 ∨ α2)

}γ

.

The analogue of this lemma in the non-conditional quantile literature was used, e.g., by

Csörgő and Révész (1978) to establish a Brownian bridge approximation of the sample quan-

tile process indexed by its order, and recently by Cheng and Parzen (1997) to investigate the

asymptotic properties of their unified smoothed estimator of the quantile function. Further

examples on the use of the non-conditional version of Condition (2.15) and its close link

with the so-called score function (see, e.g., Hájek and Sidak, 1967, p. 19) can be found in

Csörgő (1983, Chapter 1). See also Parzen (1979, 1980) for a discussion of tail monotonicity

assumptions of extreme value theory as related to this condition.

In our setup, Lemma 2.2 allows to establish the uniform complete convergence of the

normed conditional quantile process {f(qα(x)|x) (q̂α,n(x) − qα(x)) ; x ∈ K}. We recall that

a sequence of random variables {Zn} converges completely to a random variable Z (Zn
co.→ Z

as n → ∞) if
∑∞

n=1 Prob(|Zn − Z| > ε) < ∞ for every ε > 0. In particular, the complete

convergence implies convergence with probability 1 by Borell-Cantelli Lemma. See Hsu and

Robbins (1947) for further discussions.

Theorem 2.2. If the conditions of Lemma 2.2 hold, then

sup
x∈K

f(qα(x)|x)|q̂α,n(x) − qα(x)| co.−→ 0 as n → ∞.

Proof. For all x ∈ K, we have by the smoothness of F (·|x),

q̂α,n(x) − qα(x) = F−1 (F (q̂α,n(x)|x)|x) − F−1(α|x) =
F (q̂α,n(x)|x) − α

f(qαx,n
(x)|x)

where F (q̂α,n(x)|x) ∧ α < αx,n < F (q̂α,n(x)|x) ∨ α. Hence

sup
x∈K

f(qα(x)|x)|q̂α,n(x) − qα(x)| ≤ sup
x∈K

|F (q̂α,n(x)|x) − α| sup
x∈K

f(qα(x)|x)

f(qαx,n
(x)|x)

. (2.16)

Let Nx = nF̂X,n(x). Since F̂n(q̂α,n(x)|x) = k
Nx

for k−1
Nx

< α ≤ k
Nx

and k = 1, · · · , Nx (see

Aragon et al., 2005, Equation (5)), we have F̂n(q̂α,n(x)|x) − α =
∑Nx

k=1(
k

Nx
− α)1I] k−1

Nx
, k
Nx

[(α).

This yields 0 ≤ F̂n(q̂α,n(x)|x) − α ≤ 1/Nx ≤ {n infx∈K F̂X,n(x)}−1. Since infx∈K FX(x) > 0,

it can be easily seen from Daouia and Simar (2003, see the last part of the proof of Lemma

3.2 from Equation (3)) that n−1/ infx∈K F̂X,n(x)
co.−→ 0 as n → ∞, and so

sup
x∈K

|F̂n(q̂α,n(x)|x) − α| co.−→ 0 as n → ∞. (2.17)
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We also can easily show that

|F̂n(q̂α,n(x)|x) − F (q̂α,n(x)|x)| ≤ ||F̂n − F ||∞ + ||F̂X,n − FX ||∞
infx∈K F̂X,n(x)

where || · ||∞ denotes the sup-norm. As established in Daouia and Simar (2003, see the part

of the proof of Lemma 3.2 between Equations (2)-(3)), the term on the right-hand side of

the last inequality converges completely to 0 as n → ∞, and therefore

sup
x∈K

|F̂n(q̂α,n(x)|x) − F (q̂α,n(x)|x)| co.−→ 0 as n → ∞. (2.18)

By combining (2.17) and (2.18), we get

sup
x∈K

|F (q̂α,n(x)|x) − α| co.−→ 0 as n → ∞. (2.19)

On the other hand, we have by Lemma 2.2 and the definition of αx,n, for any x ∈ K

f(qαx,n
(x)|x)

f(qα(x)|x)
and

f(qα(x)|x)

f(qαx,n
(x)|x)

≤ sup
x∈K

{
α ∨ αx,n

α ∧ αx,n

1 − (α ∧ αx,n)

1 − (α ∨ αx,n)

}γ

≤ sup
x∈K

{
F (q̂α,n(x)|x) ∨ α

F (q̂α,n(x)|x) ∧ α

1 − (F (q̂α,n(x)|x) ∧ α)

1 − (F (q̂α,n(x)|x) ∨ α)

}γ

≤ sup
x∈K

{
F (q̂α,n(x)|x)

α

1 − α

1 − F (q̂α,n(x)|x)

}γ

∨ sup
x∈K

{
α

F (q̂α,n(x)|x)

1 − F (q̂α,n(x)|x)

1 − α

}γ

≤
{

supx∈K F (q̂α,n(x)|x)

α

1 − α

infx∈K(1 − F (q̂α,n(x)|x))

}γ

(2.20)

∨
{

α

infx∈K F (q̂α,n(x)|x)

supx∈K(1 − F (q̂α,n(x)|x))

1 − α

}γ

.

Since | supx∈K F (q̂α,n(x)|x)−α|, | infx∈K F (q̂α,n(x)|x)−α|, | supx∈K(1−F (q̂α,n(x)|x))− (1−
α)| and | infx∈K(1 − F (q̂α,n(x)|x)) − (1 − α)| are smaller than or equal to the quantity

supx∈K |F (q̂α,n(x)|x)−α| which converges completely to 0 in view of (2.19), the term on the

right-hand side of inequality (2.20) converges completely to 1 (it can be easily seen that if

{Vn} is a sequence of random variables such that |Vn| co.→ α, then |Vn|/α co.→ 1, α/|Vn| co.→ 1

and (α/|Vn|)γ co.→ 1; if Vn
co.→ 1 and Wn

co.→ 1 then Vn ×Wn
co.→ 1 and Vn ∨Wn

co.→ 1). Therefore

supx∈K f(qα(x)|x)/f(qαx,n
(x)|x)

co.→ 1, and thus supx∈K f(qα(x)|x)|q̂α,n(x) − qα(x)| co.−→ 0 in

view of (2.16) and (2.19). This completes the proof of Theorem 2.2. �
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3 Parametric Approximations of Quantile Frontiers

Throughout this section µ is a finite positive measure on the support of X, the order α is

fixed in ]0, 1[ and the set K ⊂ Rp is such that infx∈K FX(x) > 0.

Consider a parametric family of functions ϕθ(x) defined on R
p
+ and depending on a finite

number of parameters θ ∈ Θ ⊂ Rk. We will consider two cases: we first want to estimate

the best approximation of the partial order-α frontier function qα in the parametric family

{ϕθ|θ ∈ Θ}, and then to estimate in a robust way the following pseudo-true value of θ :

θ(K, µ) = arg min
θ∈Rk

∫

K

(ϕ(x) − ϕθ(x))2 dµ(x), (3.1)

which defines the best parametric approximation of the full frontier function ϕ in the para-

metric family {ϕθ|θ ∈ Rk}, in the L2(K, µ) norm. If it is the unique solution of (3.1), then it

coincides with the true value θ of the model (1.1). A weakly consistent estimator of θ(K, µ)

has been suggested in Florens and Simar (2005) and defined as follows:

θ̂n(K, µ) = arg min
θ∈Rk

∫

K

(ϕ̂n(x) − ϕθ(x))2 dµ(x). (3.2)

But this estimator suffers from the dramatic lack of robustness of the FDH frontier ϕ̂n.

In place of estimating θ(K, µ), Florens and Simar (2005) rather propose to estimate the

pseudo-true value for the order-m frontier:

θm(K, µ) = arg min
θ∈Rk

∫

K

(ϕm(x) − ϕθ(x))2 dµ(x), (3.3)

where m ≥ 1 is an integer by its nonparametric estimator:

θ̂m,n(K, µ) = arg min
θ∈Rk

∫

K

(ϕ̂m,n(x) − ϕθ(x))2 dµ(x). (3.4)

As an alternative, we rather propose in this paper to estimate a pseudo-true value for

the order-α frontier, defined as

θα(K, µ) = arg min
θ∈Rk

∫

K

(qα(x) − ϕθ(x))2 dµ(x). (3.5)

Our quantile-based procedure has the merit to be more robust to extremes since the order-α

quantile frontiers have the superiority of being more resistant to extremes than the FDH ϕ̂n

and the order-m frontiers ϕ̂m,n when estimating the true full frontier ϕ as showed in Daouia

and Ruiz-Gazen (2003). By a plug-in argument of the robust quantile frontier q̂α,n, we obtain

the estimator

θ̂α,n(K, µ) = arg min
θ∈Rk

∫

K

(q̂α,n(x) − ϕθ(x))2 dµ(x). (3.6)
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As pointed in Florens and Simar (2005), the existence and unicity of the pseudo-true

values (3.1), (3.3) and (3.5) are based on technical conditions (integrability, identification,

structure of the functional space {ϕθ | θ ∈ Θ}). We will not explicit these technical hypothesis

here but the implicit set of functions we consider is the set of square integrable functions

with respect to the density dµ(x). This set is an Hilbert space provided by its norm topology.

If, for instance, the subset {ϕθ | θ ∈ Θ} is closed and convex, then the pseudo-true values

exist and are unique. So, in what follows, we assume that these pseudo-true values exist and

are unique.

Moreover, for the sample values θ̂n(K, µ), θ̂m,n(K, µ), θ̂α,n(K, µ) and other estimators

defined bellow derived from θ̂m,n(K, µ) and θ̂α,n(K, µ) to converge completely, the pseudo-

true values θ(K, µ), θm(K, µ) and θα(K, µ) should be well-separated points of minimum of

the integrals in equations (3.1), (3.3) and (3.5). In other words, if we denote by M(θ) the

integral in each one of these equations and by θ0 the pseudo-true value which minimizes the

map M : Θ → R, then it will be required that

M(θ0) < inf {M(θ) | θ ∈ Θ : d(θ, θ0) ≥ ε} , (3.7)

for every ε > 0, where d(·, ·) is the Euclidean metric on Rk. The following lemma shows how

this condition will be used to prove complete convegence of our estimators. It also extends

Theorem 5.7 in van der Vaart (1998, p. 45) from the weak convergence to the complete

convegence.

Lemma 3.1. Let Mn be random functions and let M be a fixed function of θ ∈ Θ; a metric

space endowed with the metric d. Consider the values θ0 and θn that minimize θ 7→ M(θ)

and θ 7→ Mn(θ) respectively. If the condition (3.7) holds and supθ∈Θ |Mn(θ) − M(θ)| co.−→ 0,

then θn
co.−→ θ0.

Proof. First let us show that M(θn)
co.−→ M(θ0). Putting Zn = Mn(θ0) − M(θ0), we have

Zn
co.−→ 0 from the uniform complete convergence of Mn to M . Since Mn(θn) ≤ Mn(θ0) by

definition of θn, we then obtain Mn(θn) ≤ M(θ0) + Zn. Therefore

0 ≤ M(θn) − M(θ0) ≤ M(θn) − Mn(θn) + Zn ≤ sup
θ∈Θ

|Mn(θ) − M(θ)| + Zn
co.−→ 0.

Thus M(θn)
co.−→ M(θ0). Let us now show that

∑∞
n=1 P{d(θn, θ0) ≥ ε} < ∞, for every ε > 0.

Because infd(θ,θ0)≥ε M(θ) > M(θ0), there exists a number ηε > 0 such that infd(θ,θ0)≥ε M(θ) >

M(θ0) + ηε. It follows that the event {d(θn, θ0) ≥ ε} is contained in {M(θn) > M(θ0) + ηε}.
Hence

∑∞
n=1 P{d(θn, θ0) ≥ ε} ≤ ∑∞

n=1 P{M(θn) − M(θ0) > ηε} < ∞ by the complete con-

vergence of M(θn) to M(θ0). �
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A natural choice for µ is the law PX of X, but since PX is usually unknown, we can

define sample versions of the pseudo-true values by using the empirical probability measure

P̂X,n = 1
n

∑n
i=1 δXi

, putting a mass 1/n at each Xi,

θα(K, P̂X,n) = arg min
θ∈Rk

1

n

n∑

i=1

(qα(Xi) − ϕθ(Xi))
2
1IK(Xi),

θ̂α,n(K, P̂X,n) = arg min
θ∈Rk

1

n

n∑

i=1

(q̂α,n(Xi) − ϕθ(Xi))
2
1IK(Xi).

In ordre to simplify the presentation, we first restrict our parametric family to the class

of linear models

ϕθ(x) = g′(x)θ,

where g′(x) = (g1(x), · · · , gk(x)), with gj(·) being known scalar functions.

Theorem 3.1. Assume that the scalar functions g1(·), · · · , gk(·) are bounded on K.

1. If the conditions of Theorem 2.2 hold with infx∈K f(qα(x)|x) > 0, then

θ̂α,n(K, P̂X,n) − θα(K, P̂X,n)
P−→ 0 as n −→ ∞.

2. If the conditions of Theorem 2.1 hold, then

√
n

(
θ̂α,n(K, P̂X,n) − θα(K, P̂X,n)

)
L−→ N (0, MΣαM) as n → ∞,

where

M = {E[1IK(X1)g(X1)g
′(X1)]}−1, Σα = V arF {EF [H ((X2, Y2), (X1, Y1)) |(X1, Y1)]}

with H(·, ·) being described in (3.11).

Proof. The values θα(K, P̂X,n) and θ̂α,n(K, P̂X,n) have the following explicit expressions

θ̂α,n(K, P̂X,n) =

{
1

n

n∑

i=1

1IK(Xi)g(Xi)g
′(Xi)

}−1 [
1

n

n∑

i=1

1IK(Xi)q̂α,n(Xi)g(Xi)

]

,

θα(K, P̂X,n) =

{
1

n

n∑

i=1

1IK(Xi)g(Xi)g
′(Xi)

}−1 [
1

n

n∑

i=1

1IK(Xi)qα(Xi)g(Xi)

]
.

The estimation error is then given by

θ̂α,n(K, P̂X,n) − θα(K, P̂X,n) = { 1

n

n∑

i=1

1IK(Xi)g(Xi)g
′(Xi)}−1 (3.8)

× [
1

n

n∑

i=1

1IK(Xi)g(Xi)(q̂α,n(Xi) − qα(Xi))].
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We have from the asymptotic representation (2.1), for any x ∈ K,

q̂α,n(x) − qα(x) =
1

n

n∑

j=1

(1/f(qα(x)|x)FX(x)) (3.9)

×{α1I(Xj ≤ x) − 1I(Xj ≤ x, Yj ≤ qα(x))} + Rα
n(x).

Then

Vn :=
1

n

n∑

i=1

1IK(Xi)g(Xi)(q̂α,n(Xi) − qα(Xi)) (3.10)

=
1

n2

n∑

i=1

n∑

j=1

H((Xi, Yi), (Xj, Yj)) +
1

n

n∑

i=1

1IK(Xi)g(Xi)R
α
n(Xi)

where

H ((Xi, Yi), (Xj, Yj)) = 1IK(Xi)g(Xi)(1/f(qα(Xi)|Xi)FX(Xi)) (3.11)

×{α1I(Xj ≤ Xi) − 1I(Xj ≤ Xi, Yj ≤ qα(Xi))} .

Since
∑n

i=1

∑n
j=1 H((Xi, Yi), (Xj, Yj)) =

∑n
i=1

∑n
j=1 H((Xj, Yj), (Xi, Yi)), we have

1

n2

n∑

i=1

n∑

j=1

H((Xi, Yi), (Xj, Yj)) =
1

n2

n∑

i=1

n∑

j=1

H((Xi, Yi), (Xj, Yj))

where H((Xi, Yi), (Xj, Yj)) = (H((Xi, Yi), (Xj, Yj)) + H((Xj, Yj), (Xi, Yi))) /2 is a symetric

kernel. Hence, Vn is by definition (see, e.g., Serfling, 1980, p. 174) the Von Mises statistic

associated to the parametric function

θ(F ) = EF [H ((X1, Y1), (X2, Y2))]

= [EF H((X1, Y1), (X2, Y2)) + EF H((X2, Y2), (X1, Y1))] /2.

Let

H1(X1, Y1) = EF [H ((X1, Y1), (X2, Y2)) |(X1, Y1)] .

For any (x1, y1), we have H1(x1, y1) = EF [H((x1, y1), (X2, Y2))] = 0. Then H1(X1, Y1) = 0,

whence EF [H1(X1, Y1)] = 0, i.e., EF [H((X1, Y1), (X2, Y2))] = 0. We obtain in a similar way

EF [H((X2, Y2), (X1, Y1))] = 0, which gives θ(F ) = 0. Consequently, we have by Theorem A

and Lemma 5.7.3 of Serfling (1980, p. 190 and 206),

1

n2

n∑

i=1

n∑

j=1

H((Xi, Yi), (Xj, Yj))
P−→ 0 as n −→ ∞.
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On the other hand, we have from (3.9),

sup
x∈K

|Rα
n(x)| ≤ sup

x∈K
|q̂α,n(x) − qα(x)| + ||F̂X,n − FX ||∞ + ||F̂n − F ||∞

infx∈K f(qα(x)|x)FX(x)

where || · ||∞ denotes the sup-norm. Since ||F̂X,n − FX ||∞ and ||F̂n − F ||∞ converge in

probability to 0 by Kiefer’s inequality (see, e.g., Serfling, 1980, Theorem B, p. 61), it follows

from Theorem 2.2 that supx∈K |Rα
n(x)| P→ 0 as n → ∞. Hence, since the scalar functions

gj(·) are bounded on K, the vector 1
n

∑n
i=1 1IK(Xi)g(Xi)R

α
n(Xi) converges in probability to

0 as n → ∞, and thus

Vn
P−→ 0 as n −→ ∞.

Finally, since { 1
n

∑n
i=1 1IK(Xi)g(Xi)g

′(Xi)}−1 converges to {E[1IK(X1)g(X1)g
′(X1)]}−1 in

probability via the law of large numbers, we complete the proof of the first result.

Let us now prove the asymptotic normality of
√

n
(
θ̂α,n(K, P̂X,n) − θα(K, P̂X,n)

)
. We

have from (3.8)-(3.11),

√
n

(
θ̂α,n(K, P̂X,n) − θα(K, P̂X,n)

)
=

√
nVn

{
1

n

n∑

i=1

1IK(Xi)g(Xi)g
′(Xi)

}−1

=

[
√

nWn +
1

n

n∑

i=1

1IK(Xi)g(Xi)
{√

nRα
n(Xi)

}
] {

1

n

n∑

i=1

1IK(Xi)g(Xi)g
′(Xi)

}−1

where Wn = 1
n2

∑n
i=1

∑n
j=1 H((Xi, Yi), (Xj, Yj)). We obtain via Theorem A and Lemma 5.7.3

of Serfling (1980, p. 192 and 206) that
√

nWn
L−→ N (0, 4ζ1) as n → ∞, where

ζ1 = V arF {EF [H ((X1, Y1), (X2, Y2)) |(X1, Y1)]}
= V arF {EF [H ((X2, Y2), (X1, Y1)) |(X1, Y1)]} /4.

We get this last result by using the fact that H1(X1, Y1) = 0. On the other hand, if

the conditions of Theorem 2.1 hold, then supx∈K

√
n|Rα

n(x)| P−→ 0 as n → ∞ by Corol-

lary 2.1. If furthermore the scalar functions gj(·) are bounded on K, then the vector
1
n

∑n
i=1 1IK(Xi)g(Xi){

√
nRα

n(Xi)} converges in probability to 0 as n → ∞. This ends the

proof. �

Let us now turn to the more general case where we consider a general parametric model

and a general measure µ. From now on, we will assume that the condition (3.7) holds for

each integral M(θ) and its corresponding pseudo-true value θ0 in Equations (3.1), (3.5) and

(3.3). Let us start by the complete convergence of θ̂α,n(K, µ).
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Theorem 3.2. Assume that ϕ and {ϕθ, θ ∈ Θ} are bounded on K and that the conditions

of Theorem 2.2 hold with infx∈K f(qα(x)|x) > 0. Then

θ̂α,n(K, µ)
co.−→ θα(K, µ) as n → ∞.

Proof. Following Lemma 3.1, we shall prove that
∣∣∣∣

∫

K

(q̂α,n(x) − ϕθ(x))2 dµ(x) −
∫

K

(qα(x) − ϕθ(x))2 dµ(x)

∣∣∣∣

converges completely and uniformly in θ to 0 as n → ∞. Since ϕ and ϕθ, θ ∈ Rk, are bounded

on K and µ(K) is finite, it suffices to show that supθ∈Rk

∣∣||q̂α,n − ϕθ||L2(K,µ) − ||qα − ϕθ||L2(K,µ)

∣∣

converges completely to 0 as n → ∞. We have

sup
θ∈Rk

∣∣||q̂α,n − ϕθ||L2(K,µ) − ||qα − ϕθ||L2(K,µ)

∣∣ ≤ ||q̂α,n − qα||L2(K,µ)

with

||q̂α,n − qα||2L2(K,µ) =

∫

K

(q̂α,n(x) − qα(x))2 dµ(x) ≤ (sup
x∈K

|q̂α,n(x) − qα(x)|)2µ(K).

Since infx∈K f(qα(x)|x) > 0, we get supx∈K |q̂α,n(x) − qα(x)| co.−→ 0 in view of Theorem 2.2,

and thus we obtain the complete convergence of θ̂α,n(K, µ) to θα(K, µ). �

Note that in the preceding theorem, if we replace the conditions of Theorem 2.2 by those of

Theorem 2.1, then by following the same arguments we could obtain θ̂α,n(K, µ)
P−→ θα(K, µ)

as n → ∞.

By making use of Theorem 2.1 in conjunction with a technique of proof of Florens and

Simar (2005), the next theorem shows the asymptotic normality of θ̂α,n(K, µ).

Theorem 3.3. Assume that ϕ and {ϕθ, θ ∈ Θ} are bounded on K and that the conditions

of Theorem 2.1 hold. Assume furthermore that θ 7→ ϕθ(x) is differentiable on Θ for any

x ∈ K, that the differentiability at θα(K, µ) is uniform in x ∈ K, i.e.,

sup
x∈K

∣∣∣∣
ϕθ(x) − ϕθα(K,µ)(x)

θ − θα(K, µ)
− ∂ϕθ

∂θ
(x)|θ=θα(K,µ)

∣∣∣∣ −→ 0 as θ → θα(K, µ),

and that A, A−1, B and
∫

K
∂ϕθ

∂θ
(x)|θ=θα(K,µ)dµ(x) exist, where

A =

∫

K

∂ϕθ

∂θ
(x)|θ=θα(K,µ)

∂ϕθ

∂θ′
(x)|θ=θα(K,µ)dµ(x)

B =

∫

K

∫

K

∂ϕθ

∂θ
(x)|θ=θα(K,µ)

∂ϕθ

∂θ′
(z)|θ=θα(K,µ)Γα(x, z)dµ(x)dµ(z),

with Γα(·, ·) being described in (2.13). Then,

√
n

(
θ̂α,n(K, µ) − θα(K, µ)

)
L−→ N(0, A−1BA−1).
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Proof. We have in view of the first order conditions which define θ̂α,n(K, µ),

∫

K

(
q̂α,n(x) − ϕbθα,n(K,µ)(x)

) ∂ϕθ

∂θ
(x)|θ=bθα,n(K,µ)dµ(x) = 0.

It follows

√
n

∫

K

∂ϕθ

∂θ
(x)|θ=bθα,n(K,µ) (q̂α,n(x) − qα(x)) dµ(x)

+
√

n

∫

K

∂ϕθ

∂θ
(x)|θ=bθα,n(K,µ)

(
qα(x) − ϕθα(K,µ)(x)

)
dµ(x)

=
√

n

∫

K

∂ϕθ

∂θ
(x)|θ=bθα,n(K,µ)

(
ϕbθα,n(K,µ)(x) − ϕθα(K,µ)(x)

)
dµ(x).

In this equality, ∂ϕθ

∂θ
(x)|θ=bθα,n(K,µ) can be replaced by ∂ϕθ

∂θ
(x)|θ=θα(K,µ) and we note that the

second term on the left hand side is then equal to zero, by the definition of θα(K, µ). By

Young’s form of Taylor’s expansion of the first order, we have for any x ∈ K,

ϕbθα,n(K,µ)(x) − ϕθα(K,µ)(x) =
∂ϕθ

∂θ′
(x)|θ=θα(K,µ)

(
θ̂α,n(K, µ) − θα(K, µ)

)

+ ε(θ̂α,n(K, µ) − θα(K, µ))
(
θ̂α,n(K, µ) − θα(K, µ)

)

where ε(θ̂α,n(K, µ) − θα(K, µ)) = op(1) as n → ∞, uniformly in x ∈ K, since θ̂α,n(K, µ) −
θα(K, µ)

P−→ 0 and the differentiability of θ 7→ ϕθ(x) at θα(K, µ) is uniform in x ∈ K.

Therefore

√
n

∫

K

∂ϕθ

∂θ
(x)|θ=θα(K,µ)

(
ϕbθα,n(K,µ)(x) − ϕθα(K,µ)(x)

)
dµ(x)

=

(∫

K

∂ϕθ

∂θ
(x)|θ=θα(K,µ)

∂ϕθ

∂θ′
(x)|θ=θα(K,µ)dµ(x)

) {√
n

(
θ̂α,n(K, µ) − θα(K, µ)

)}

+

(∫

K

∂ϕθ

∂θ
(x)|θ=θα(K,µ)dµ(x)

)
ε(θ̂α,n(K, µ) − θα(K, µ))

{√
n

(
θ̂α,n(K, µ) − θα(K, µ)

)}
.

It follows

√
n

(
θ̂α,n(K, µ) − θα(K, µ)

)
=

{∫

K

∂ϕθ

∂θ
(x)|θ=θα(K,µ)

∂ϕθ

∂θ
(x)|θ=θα(K,µ)dµ(x)

+

∫

K

∂ϕθ

∂θ
(x)|θ=θα(K,µ)dµ(x)ε(θ̂α,n(K, µ) − θα(K, µ))

}−1

×
∫

K

∂ϕθ

∂θ
(x)|θ=θα(K,µ)

{√
n (q̂α,n(x) − qα(x))

}
dµ(x).

We finally obtain the desired convergence by using Theorem 2.1. �
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Note that for practical purposes (construction of confidence intervals,. . . ), we could use

bootstrap estimates of the variance matrix A−1BA−1, as suggested in details in Florens and

Simar (2005, Appendix)

Convergence to the parametric approximation of the full frontier itself

Florens and Simar (2005) show that the estimator θ̂n(K, µ) defined in (3.2), converges in

probability to θ(K, µ). We will show below how this weak consistency can be easily extended

to the complete convergence sense. On the other hand, Cazals et al. (2002) derived an

estimator ϕ̂m(n),n of the full frontier function ϕ by an appropriate choice of the order m as

a function of the sample size n. This estimator shares the same asymptotic distribution

as the FDH estimator ϕ̂n, but is more robust to extremes. Likewise, Aragon et al. (2005)

suggested a quantile-type estimator q̂α(n),n of ϕ, which keeps the same asymptotic distribution

as ϕ̂n and ϕ̂m(n),n. In our next theorem, we will also show the complete convergence of the

corresponding pseudo-true values θ̂m(n),n(K, µ) and θ̂α(n),n(K, µ) when estimating θ(K, µ)

itself. For this we need the following lemma.

Lemma 3.2. Assume that FX, ϕ and ϕm are continuous on a compact subset K interior

to the support of X, for every m ≥ 1, and that the upper boundary of the support of Y is

finite. Then, supx∈K |ϕ̂n(x)−ϕ(x)|, supx∈K |ϕ̂m(n),n(x)−ϕ(x)| and supx∈K |q̂α(n),n(x)−ϕ(x)|
converge completely to 0 as n → ∞, where m(n) and α(n) are such that

lim
n→∞

m(n) = ∞, lim
n→∞

m(n) (log n/n)1/2 = 0 and lim
n→∞

n(1 − α(n)) = 0.

This lemma is proved in Daouia and Simar (2005, see Theorems 2.1, 2.3 and Lemma 3.3).

Theorem 3.4. Assume that the parametric functions {ϕθ, θ ∈ Rk} are bounded on K

and that the conditions of Lemma 3.2 hold. Then, θ̂n(K, µ), θ̂m(n),n(K, µ) and θ̂α(n),n(K, µ)

converge completely to θ(K, µ) as n → ∞. In particular, if the parametric model (1.1) is

correctly specified for the frontier, then the three estimators converge completely to the value

θ such that ϕ = ϕθ.

Proof. It can be easily seen that

sup
θ∈Rk

∣∣||ϕ̂n − ϕθ||L2(K,µ) − ||ϕ − ϕθ||L2(K,µ)

∣∣ ≤ ||ϕ̂n − ϕ||L2(K,µ) ≤ sup
x∈K

|ϕ̂n(x) − ϕ(x)|(µ(K))1/2

sup
θ∈Rk

∣∣||ϕ̂m(n),n − ϕθ||L2(K,µ) − ||ϕ − ϕθ||L2(K,µ)

∣∣ ≤ sup
x∈K

|ϕ̂m(n),n(x) − ϕ(x)|(µ(K))1/2

sup
θ∈Rk

∣∣||q̂α(n),n − ϕθ||L2(K,µ) − ||ϕ − ϕθ||L2(K,µ)

∣∣ ≤ sup
x∈K

|q̂α(n),n(x) − ϕ(x)|(µ(K))1/2.
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The proof follows by using the same technique of proof of Theorem 3.2 in conjunction with

these inequalities and Lemma 3.2. �

Note that the full frontier ϕ(·) is monotone and it is natural to try to incorporate this

information into the estimation procedure. Daouia and Simar (2005) proposed nondecreasing

estimators ϕ̂#
m(n),n and q̂#

α(n),n of ϕ by isotonizing the original estimators ϕ̂m(n),n and q̂α(n),n.

These monotone estimators appear to be more stable and more robust to extreme values than

the initial versions. Furthermore, they converge uniformly and completely to ϕ under the

same conditions of Lemma 3.2 (see Daouia and Simar, 2005, Theorems 2.1-2.3) and so, we can

introduce the new estimators θ̂#
m(n),n(K, µ) and θ̂#

α(n),n(K, µ) of θ(K, µ) and easily establish

their uniform complete convergence in the same way as the original ones θ̂m(n),n(K, µ) and

θ̂α(n),n(K, µ).

Note also that the analysis of the asymptotic distributions of θ̂n(K, µ), θ̂m(n),n(K, µ),

θ̂α(n),n(K, µ) and their isotonized versions is more complexe since there is no functional

convergence theorem for ϕ̂n, ϕ̂m(n),n and q̂α(n),n to ϕ. Only punctual convergence results to

a Weibull distribution for ϕ̂n(x), ϕ̂m(n),n(x) and q̂α(n),n(x) are available, respectively, in Park

et al. (2000), Cazals et al. (2002) and Aragon et al. (2005). We shall return to this topic in

another paper.

All the results proved in our approach remain valid if we use w(x)dx instead of dµ(x),

where w(x) is a given weight function which can be viewed as a density on x weighting the

error term.

4 Numerical Illustrations

In this section, we present three simulated examples as in Florens and Simar (2005) to

illustrate our procedure, we also present a real data example on the activity of Air Controlers

in Europe. We confirm the advantages of the robust semi-parametric estimators in the

presence of outliers over their full frontier alternative (either using Shifted-OLS or the FDH

filter as a first stage) and we compare in these examples the parametric quantile-type frontier

approximations with the order-m frontier approximations, indicating some advantages of the

former over the latter.

4.1 Example 1

We first consider a case where the frontier function ϕ is linear. We choose (X, Y ) uniformly

distributed over the region D = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ x}. Here ϕ(x) = x, ϕθ(x) = θx

with 0 ≤ θ ≤ 1, and F (y|x) = 2x−1y − x−2y2, for 0 < x ≤ 1 and 0 ≤ y ≤ x. The conditional
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α-quantile is qα(x) = x(1−
√

1 − α), for 0 < x ≤ 1 and 0 ≤ α ≤ 1, and the order-m frontier

can be computed as ϕm(x) = x(1 − Am), where Am =
∑m

j=0 (m
j)(−1)m−j2j/(2m − j + 1).

Therefore θα = 1 −
√

1 − α and θm = 1 − Am.

The parametric approximations {θ̂m,n}n and {θ̂α,n}n do not estimate in general the same

quantity, except for the limiting case where m tends to infinity and α to one. But in this

particular example, if α = 1 − A2
m, then both partial pseudo-true values θα and θm coincide

and so, the robust proposals of the two sequences of parametric approximations can be

compared.

We illustrate in Figure 1 one sample of 100 observations generated according the above

scenario and we compare the results when adding 3 outliers. As expected and already

pointed in Florens and Simar (2005), in this scenario, the shifted-OLS behaves very badly.

The interest here is focused on the comparison of the order-m frontier with the α-quantile,

with their common FDH limit. When there are no outliers, the two fitted parametric frontier

are, as expected by our choice of m and α, very similar but when the 3 outliers are added,

the α-quantile seems to resist more easily to the presence of the 3 serious outliers. We see

also that the fit obtained by the FDH estimator is too sensitive to these outliers.

4.2 Example 2

We choose here a concave frontier given by the Cobb-Douglas model Y = X1/2 exp (−U),

where X is uniform on [0, 1] and U , independent of X, is Exponential with parameter λ = 3.

Here ϕ(x) = x1/2 and ϕθ(x) = θx1/2 with 0 ≤ θ ≤ 1. The α-quantile frontier is given

by qα(x) = x1/2θα, where θα = cos
(

arccos(1−2α)+4π
3

)
+ 1

2
, and the order-m frontier can be

computed as ϕm(x) = x1/2θm, where θm = 1 − Bm with Bm =
∑m

j=0 (m
j)(−2)m−j3j/(3m −

j + 1). In this particular case, if α = 1
2
(1 − cos[3 arccos(1

2
− Bm) − 4π]), then θα ≡ θm can

be estimated by {θ̂m,n}n as well as {θ̂α,n}n.

We illustrate again, in Figure 2, one sample of 100 observations and we compare the

results when adding 3 outliers to the same sample. Here, the shifted-OLS behaves better

since the inefficiency terms U are independent of X. The comparison of the order-m frontier

with the α-quantile leads to similar conclusion than in the preceding example: as expected,

similar results when there are no outliers and again, the α-quantile seems to resist more to

the presence of the 3 outliers.

4.3 Example 3

We choose here, as in Florens and Simar (2005) the same scenario as in the preceding example

but we introduce heterogeneity in the inefficiency term (U is not independent of X): here
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we choose E(U |X) = 2
3
(1−X) so that E(U) = 1/3 as above in Example 2. We do not have

explicit analytical expressions for the ϕm(x) nor for qα(x). But for ease of comparison, we

chose the same values for m and α as above.

Figure 3 displays the results (again, one sample of 100 observations without and with 3

added outliers). Here, the shifted-OLS is a catastrophe (as pointed in Florens and Simar,

2005). The comparison of the order-m frontier with the α-quantile leads again to similar

conclusion than in the two preceding examples: similar results when there are no outliers

and better robustness to the three outliers for the α-quantile fitted frontier.

4.4 A real data set

We could use our approach to any model with multiple inputs but in order to provide pictures

in two dimensions, we illustrate our estimators with a real data coming from the efficiency

analysis of Air Controllers in Europe (Mouchart and Simar, 2002). We have data on activity

of 37 European air controllers in the year 2000. The activity of each controller can be

described by one input (an aggregate factor of different kind of labor) and one output (an

aggregate factor of the activity produced, based on the number of air movements controlled,

the number flight hours controlled, . . . ).

Here we have n = 37 observations and we choose m = 20 and α = 0.95, only for

illustrative purpose. The computation time is so fast (less than 0.15 seconds for producing

the estimates), that a grid of values for the tuning parameters (m and α) can be chosen and

then the practitioner could proceed to a sensitivity analysis. We also choose a Cobb-Douglas

specification for the frontier model. Figure 4 displays the obtained results.

Clearly, the shifted-OLS seems to be outperformed by the other estimators, since it is

based on a restrictive hypothesis of homogeneous distribution of the inefficiencies. The fit

obtained through the first step FDH filter provide a sensible estimate but is very sensitive

to extreme values (one around x = 2.8 and the other on the right around x = 7.5). Again,

the fit based on the order-m filter is more robust to these extreme points but as expected,

this is still more true with the fit obtained with the α-quantile frontier.

Just for illustrative purpose, we reproduce in Table 1 the point estimates of the fitted

Cobb-Douglas production frontier. As explained in Florens and Simar (2005), standard

deviations of the parameters obtained through the order-m and the α-quantile frontier can

be obtained by simple bootstrap. The other two approaches (full-frontier estimates) cannot

provide, up to now, estimates of the standard deviations of the estimates.
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method Intercept Elasticity
Shifted-OLS 0.8238 0.8833
FDH 0.5886 0.8838
α-quantile 0.5554 0.7798
order-m 0.5583 0.8191

Table 1: Point estimates of the Cobb-Douglas parameters following the different approaches.

5 Conclusion

In this paper we have shown how the parametric approximation of α-quantile frontiers offers

an attractive alternative to the approximation of the order-m frontier, as proposed by Florens

and Simar (2005). The former benefits from better robustness properties to outliers or

extreme values than the latter, both approaches being more robust than the parametric

approximation of the full frontier using the FDH as first step.

It confirms also that these approaches are much more appealing than the classical para-

metric estimators of the frontier, that are mostly based on regression ideas and fit the shape

of the center of the cloud of points rather than its boundary.

The paper provides all the statistical theory (asymptotic). We first prove functional con-

vergence results of the quantile-type frontier and establish its uniform complete convergence.

Then we prove the root-n consistency and asymptotic normality of the resulting estimators

of the parametric approximation of the partial order-α frontier.

We also improve some convergence results obtained by Florens and Simar (2005) when

estimating the parameters of the full frontier. We provide new results for estimating these

parameters, by using the more robust order-m or order-α partial frontiers in the first step:

we show the complete convergence of these estimators, by chosing m and α as appropriate

functions of n. Finally the good behavior of our method in finite samples is illustrated

through simulated and real data sets.
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Figure 1: Results for Example 1. In solid black line, the true frontier y = x. In cyan

solid, the FDH frontier estimate and its corresponding parametric fit, in blue dashed the

order-m frontier ϕ̂m,n, and its corresponding parametric fit and in dash-dot red the order-α
frontier q̂α,n and its corresponding parametric fit. Here, m = 20 and α = .9622. From

top to bottom 100 simulated observations without outliers, 100 simulated observations with 3
outliers included. In black dotted, the shifted OLS estimate.
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Figure 2: Results for Example 2. In solid black line, the true frontier y = x0.5. In cyan

solid, the FDH frontier estimate and its corresponding parametric fit, in blue dashed the

order-m frontier ϕ̂m,n, and its corresponding parametric fit and in dash-dot red the order-α
frontier q̂α,n and its corresponding parametric fit. Here, m = 20 and α = .9622. From

top to bottom 100 simulated observations without outliers, 100 simulated observations with 3
outliers included. In black dotted, the shifted OLS estimate.
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Figure 3: Results for Example 3. In solid black line, the true frontier y = x0.5. In cyan

solid, the FDH frontier estimate and its corresponding parametric fit, in blue dashed the

order-m frontier ϕ̂m,n, and its corresponding parametric fit and in dash-dot red the order-α
frontier q̂α,n and its corresponding parametric fit. Here, m = 20 and α = .9622. From

top to bottom 100 simulated observations without outliers, 100 simulated observations with 3
outliers included. In black dotted, the shifted OLS estimate.
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Figure 4: Air controlers example. In cyan solid, the FDH frontier estimate and its cor-

responding parametric fit, in blue dashed the order-m frontier ϕ̂m,n, and its corresponding

parametric fit and in dash-dot red the order-α frontier q̂α,n and its corresponding parametric

fit. Here, m = 20 and α = .95. In black dotted, the shifted OLS estimate.
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