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Abstract

Optimizing the quality of a product is widespread in the industry. Products have to
be manufactured such that they best fit some quality properties. Varying the product
settings leads to different product qualities and the aim of the manufacturer is to find
the factors settings that simultaneously optimize the quality properties.

The classical approach to solve such optimization problem is based on response
surface methodology. First, a designed experiment is used to collect data and to adjust
models capturing the relationship between the responses of interest and the factors
settings. Those fitted models can then predict the quality properties for any design
point of the experimental domain. Secondly, a desirability index is built to combine the
predicted properties into a value belonging to the [0, 1] interval. This index provides
a ranking of possible factors settings in the solutions space and the optimum can be
found by an adequate optimization algorithm. But, as model predictions are suiled
with error, so is the desirability index and the optimal solution found. In practice, in
the related literature and design of experiment software, this error is neglected.

This paper proposes an optimization methodology based on the fact that a desir-
ability index is a random variable. The expectation of this index is taken as the criteria
to be optimized and, since it can only be estimated, confidence and predicted inter-
vals are constructed to take into account the propagation of the models error on the
expected or predicted desirability index. The stochastic character of the index leads
also to an uncertainty on the optimum and a methodology is proposed to build an
equivalence zone containing no significantly different optimal solutions. This method-
ology is illustrated on a simulated example and compared to the classical optimization
methodology.

Keywords: Multiresponse optimization, desirability, experimental design, error propaga-
tion, confidence interval, equivalence zone.
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1 Introduction

1.1 Classical approach to multiresponse optimization

Improving the quality of a product is a challenge that industries face daily. A food industry
may want to improve the quality of its cakes, a rubber industry the quality of a tire tread
compound, a pharmaceutical industry the quality of drug candidates, etc.

If a set of factors, x = (x1, x2, . . . , xk), can be chosen during manufacturing leading to
different product qualities, Y = (Y1, Y2, . . . , Yp), modifying the xj ’s makes the Yi’s vary-
ing. Producers want to find the factors settings that simultaneously optimize the p quality
responses.

The classical approach to this optimization problem assumes that statistical models are
available to predict the responses, Yi’s, from the factors, xj ’s. To avoid to much expensive
and time consuming trials, data are usually collected following an experimental design and
models fitted to the data by multiple polynomial regression (Box and Draper, 1986; Khuri
and Cornell, 1987; Myers et al., 1989; Myers and Montgomery, 2002). For each Yi, an
adequate optimization algorithm can then be used to find the optimal factors settings in the
experimental domain, denoted χ.

As the optimal xj ’s for the Yi’s are usually different, the Yi’s responses may be com-
petitive and it is often impossible to improve one response without deterioring another.
The best compromise has to be found taking into account the relative importance of each
response. A possible approach to transform the multiresponse optimization into a single
objective optimization is to use distance or loss function measuring the departure from the
individual responses optima. This methodology is not treated in this paper. For a review
of this subject, see Khuri and Conlon (1981) or Ko et al. (2005).

In the context of industrial statistics and experimental design, the balance between the
different responses is usually measured by a desirability index, a concept introduced by
Harrington (1965). Harrington suggests to associate a value belonging to [0, 1], D(x), to
each combination of factors levels, x, representing the desirability of the resulting product
quality. The desirability index has to be maximized. It allows to transform the multiresponse
optimization into a unique objective optimization. D(x) is usually defined as a combination
of desirability functions, di(Yi), i = 1, 2, . . . , p, representing the confinity of each individual
response to its specifications. Different types of desirability functions are proposed in the
literature, the most well known are coming from Derringer and Suich (1980). Nowadays,
such optimization methodology is commonly used by practitionners and implemented in
most experimental design softwares (JMP, MODDE, Design-Expert,. . . ).

In spite of this success, this methodology has a main drawback : it neglects the models
prediction errors. For nearly all kinds of models, it is possible to quantify the uncertainty
when using fitted models to estimate the expected responses for a new experimental domain
point. The uncertainty of estimated expected responses propagates on the desirability index
but this information is not taken into account in the classical optimization approach. Desir-
ability indexes of two solutions are compared as if they were exact although they are random
variables. This paper proposes a methodology that takes into account the uncertainty of
the desirability index in multicritera optimization.
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1.2 Stochastic approach to multiresponse optimization

As predictions provided by response models are affected by prediction error due to ex-
perimental error and model uncertainty, a desirability index built from these predictions
becomes a random variable with a statistical distribution depending on the distribution of
the predicted responses Ŷ1, Ŷ2, ..., Ŷp in x, a point of interest in the factors domain χ.

Steuer (2000) is the first author to discuss this problem in the context of desirability
optimization. He points out that the random error term is neglected and suggests to take it
into account by maximizing the expected desirability index over the factors domain instead
of the desirability index of the estimated expected response as in the classical approach.
The derived optimum xopt represents the factors settings which give, in average, the highest
desirability index.

Other problems follow from the stochastic character of the desirability index. First, due
to response model uncertainty, the expected desirability index can only be estimated. A
formula for this estimator must then be derived and one may also be interested to calculate
a confidence interval to quantify the incertitude of this estimator. Second, the incertitude on
the estimated expected desirability index leads to an incertitude on the estimated optimal
factors settings, x̂opt, and an equivalence zone may also be derived to delimit the subset of
the factors domain which contains no significantly different optimal solutions. Third, real
experiments are always affected by experimental error. An experiment performed at the
optimal factors settings will never give the expected response and desirability index even if
the models fit ”perfectly” the average responses. For a solution x in the factors domain,
the calculation of a prediction interval for the (observed) desirability index is then also a
question of interest.

This problem is partially discussed in the literature. When a single response is concerned,
Box and Hunter (1954) proposed an exact method to derive a confidence region for the
stationary point of an estimated second order polynomial model. Stablein et al. (1983)
generalized it to the constraint experimental region using Lagrange multipliers. Böckenholt
(1989) summarized the results of the former authors and proposed a method to test if the
optima of different response surfaces are statistically different. Still for the single response
problem, del Castillo and Cahya (2001) and Peterson et al. (2002) proposed an improvement
of the Stablein et al. method which can be used for general linear regression models and is
more easy to apply provided that an adapted computer program is available.

For the multiple response case, Steuer (2000) pointed out the interest to work on the
expected desirability index. Weber and Weihs (2003) derived analytically the statistical
distribution of the desirability index for Harringon desirability functions. Cahya (2002)
proposed a way to derive a confidence zone for optimal factors settings based on the Delta
theorem and Trautmann and Weihs (2004) proposed a way to derive an equivalence zone
for the optima based on a prediction interval for the desirability index.

1.3 Goal and overview of the paper

This paper proposes a general framework to take into account model and desirability index
uncertainty in multicriteria optimization. Under general assumptions over the form of re-
sponse models and desirability functions and for the geometric mean desirability index, it
proposes formulas to estimate the expected desirability index, calculate related confidence
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and prediction intervals and derive an equivalence zone for the optimum. Most results
are based on variations of the Delta method theorem that shows, through simulations, to
perform very well in this context.

In the next section, some notations are introduced for the assumed models linking re-
sponses to factors. In section 3, the literature on desirability indexes is reviewed and the
classical optimization problem is formally expressed in terms of maximizing the desirability
index of the expected responses.

Then the new optimization approach based on the expected desirability index is formal-
ized in section 4. The computation procedures of Steuer (2000) and Trautmann and Weihs
(2004) are reviewed and the need of taking prediction error into account emphasized.

In section 5, a new technique to estimate the expected desirability index based on the
Delta method (von Mises, 1947) is proposed. The Delta method is first used to approximate
the expected desirability index and estimate it. Then the Delta method theorem is used
to quantify the uncertainty of this estimation by constructing confidence intervals. This
constitutes section 6.

Once the factors settings that maximize the expected desirability index have been found
by an adequate algorithm, the Delta method theorem can also be used to determine the set
of equivalent solutions, i.e. factors settings that do not have significantly different expected
desirability index. Details can be found in section 7.

Section 8 explains then how to construct a prediction interval for the desirability index
when applying desirability index directly on predicted responses. This problem is related
to the classical optimization approach and emphasises the danger of neglecting prediction
error.

Finally, in section 9, the methodology is applied on a simulated optimization example to
show its preformance.

2 Model and notations

Each response defining the quality of the product, Yi (i = 1, 2, . . . , p), is assumed to be
related to the same set of varying factors, xj ’s (j = 1, 2, . . . , k). The objective is to find the
factors settings x = (x1, x2, . . . , xk) in the factors domain of interest χ that simultaneously
optimize the p responses Y = (Y1, Y2, . . . , Yp).

Multiresponse optimization is a common problem in industries. As they can not face
testing all possible combinations of factors levels and measure the quality of resulting prod-
ucts, a model capturing the relationship between each response and factors is assumed over
the domain of interest through an equation of the form

Yi = fi (x,βi) + εi (1)

where the true link function fi is unknown as well as the model parameters (k × 1) vector
βi. The experimental errors εi are assumed to be of zero mean with variance σεi

2 leading to
the equalities E[Yi|x] = fi (x,βi) and V (Yi|x) = σ2

εi . Moreover, for two different responses
Yi and Yj , the corresponding conditional errors εi and εj are supposed to be independent.

Using experimental design tools, a set of independent experiments within χ can be ad-
equately chosen and performed to collect data on which the assumed models can be fitted.

4



For each property, the estimated model is denoted by

Ŷi = f̂i

(
x, β̂i

)
. (2)

Thanks to equation (2), the expected responses can be estimated for any point x in
the experimental domain χ. In this paper, we suppose that Ŷi = Ê(Yi|x) is an unbiased
estimator of E(Yi|x) and that a formula is available to estimate the uncertainty of this
estimate and of the prediction : V̂ (Ê(Yi|x)) and V̂ (Ŷi|x). We suppose also that those
variances estimators are unbiased.

In this framework, the most well-known class of models is the multiple linear regression
model usually used in experimental design. The link between the ith response Yi and the
factors x is assumed to follow an equation of the form

Yi = z′iβi + εi (3)

where zi is a (qi×1) vector of linear, polynomial or nonlinear transformations of the factors
settings x (qi is the number of model parameters).

On the basis of ni independent experiments, each model can be fitted to data by least
squares, leading to the prediction formula :

Ŷi = z′iβ̂i = z′i(Z
′
iZi)

−1Z′iyi = Ê(Yi|x) i = 1, 2, . . . , p. (4)

where Zi is the (ni×qi) model matrix for response i and yi the corresponding (ni×1) vector
of observed responses yij , (j = 1, 2, · · · , ni). When using this fitted model for prediction in a

new point x, the uncertainty of the estimated expected response Ê[Yi|x] and the uncertainty
of the predicted response Ŷi|x can respectively be quantified by

V̂
[
Ê[Yi|x]

]
= σ̂εi

2z′i(Z
′
iZi)

−1zi (5)

and
V̂
[
Ŷi|x

]
= σ̂εi

2.
(
1 + z′i(Z

′
iZi)

−1zi

)
(6)

where σ̂2
εi = 1

ni−qi
∑ni

j=1 (yij − ŷij)2
is the residual variance estimator.

3 Desirability functions and desirability indexes

The concept of desirability was introduced by Harrington (1965) to provide a solution to
multiresponse optimization problems. It allows to balance the optimized properties Yi’s one
against the other, taking into account their target value, their relative importance and their
scale.

Harrington proceeds in two steps. First, each response Yi is transformed to the same
scale using a desirability function, denoted by di, such that di (Yi) ∈ [0, 1]. If di (Yi) =
0, the product is not at all acceptable according to the specifications of the ith property
and if di (Yi) = 1, the product fullfields them perfectly. The most well-known desirability
functions are the one of Harrington (1965) based on the exponential function of a linear
transformation of the Yi’s and the one of Derringer and Suich (1980) based on a power of a
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linear transformation of the Yi’s. Gibb et al. (2001) and Govaerts and Le Bailly de Tilleghem
(2005) propose smoother and differentiable desirability functions based on the logit function,
normal density and normal distribution functions. These four types of desirability functions
are presented in Figure 1 and Table 1 for the cases where the response must be maximized,
minimized or reach a target value.

Figure 1: Different desirability functions. The continuous lines represent cases of targeted property
and the dotted and dashed lines represent cases of minimized and maximized property respectively.

Maximum Minimum Target Value
Harrington (1965) exp(−exp(−a−bY )) 1−exp(−exp(−a−bY )) exp(−| Y−Tb |

n)

Derringer
and Suich (1980)

0 if Y <a

(Y−ab−a )s if a≤Y≤b
1 if Y >b

1 if Y <b

( a−Ya−b )s if b≤Y≤a
0 if Y >a

0 if Y <a1

(
Y−a1
T−a1

)s1 if a1≤Y≤T
(
a2−Y
a2−T )s2 if T≤Y≤a2

0 if Y >a2

Gibb et al (2001) (1+exp(− Y−ab ))−1 (1−exp(− Y−ab ))−1 exp(− 1
2 (Y−Tb )2)

Le Bailly and
Govaerts (2005)

Φ(Y−ab ) 1−Φ( Y−ab )
q

Φ(
Y−a1
b1

)(1−Φ(
Y−a2
b2

))

Table 1: Examples of desirability functions. Y is a response; the target value T and the parameters
a and b have to be adjusted according to the specifications; Φ is the cumulative distribution function
of the standard normal.

Secondly, the transformed properties di(Yi) are aggregated in a single value still in the
[0, 1] interval, the desirability index, representing the overall desirability of the product. The
weighted arithmetic mean or the weighted geometric mean of the desirability functions (Der-
ringer, 1994), as well as their minimum (Kim and Lin, 2000) are the three most often used
desirability indexes, denoted by D(x): D(x) =

∑p
i=1 wi · di (Yi), D(x) =

∏p
i=1 (di (Yi))

wi

with
∑p

i=1 wi = 1 or D(x) = mini di (Yi).
The desirability index transforms the multicriteria optimization into a single objective

optimization and establishes a ranking in the solution space. The aim of the manufacturer
is to find the factors levels x ∈ χ that maximize the desirability index.

This paper treats general desirability functions of the form di : < →]0, 1], that are two
times continuously differentiable and supposes that they are aggregated with the weighted
geometric mean desirability index. This differentiability property is not verified for the
Derringer and Suich desirability function and for the Harrington one when a target value
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is sought. A similar methodology may also be applied to desirability index defined as
the weighted arithmetic mean using the same tools to develop analogue formulas. In the
following, desirability functions are abbreviated by DF and desirability index by DI.

If statistical models of the form (2) are available to predict the responses Yi’s for any point
x = (x1, x2, . . . , xk) in χ, the DI optimization problem, is classically solved by maximizing
the following expression :

max
x∈χ

p∏

i=1

(
di

(
Ŷi

))wi
= max

x∈χ

p∏

i=1

(
di

(
Ê[Yi|x]

))wi
(7)

This is the classical use of DI proposed by Harrington (1965) and Derringer and Suich
(1980) in their respective papers with different DF’s. Both do not discuss the fact that the
Yi’s are random variables which can not be predicted exactly and that the predictions Ŷi
are only uncertain estimators of E(Yi|x).

Defining

D̂C(x) =

P∏

i=1

(
di

(
Ê[Yi|x]

))wi
(8)

and using an adequate optimization algorithm, the solution of (8) can be found and is
denoted by x̂Copt = argmaxx∈χ D̂C(x). The hats stand for estimations as opposed to true

(but unknown) quantities: xCopt = argmaxx∈χDC(x) with DC(x) =
∏P
i=1 (di (E[Yi|x]))wi .

4 Uncertainty of the responses, the desirability index
and the optimum

For any point x ∈ χ, each corresponding responses Yi|x is a random variable, each desirabil-
ity function di (Yi|x) is a random variable and the desirability indexD(x) =

∏p
i=1 (di (Yi|x))

wi

is also a random variable. To take this into account, Steuer (2000) proposes an improved
optimization procedure by rewriting the optimization problem (7) as :

max
x∈χ

DN (x) = max
x∈χ

E(D(x)) = max
x∈χ

E

[
p∏

i=1

(di (Yi|x))wi

]
(9)

Let’s note xNopt the solution of this maximization problem. In an experimental context,
this optimal solution will provide the factors settings which, on average, give the maximum
desirability. Each single experiment at xNopt will not give this expected DI but will provide a

realisation of the random variable D(xNopt). The idea of maximising the expected DI instead
of the DI of expected responses is the same as in the utility theory field as defined by von
Neumann and Morgenstern (1944). The expected utility function, u, is maximized instead
of the utility function of expected results, R, to take risk factors into account: maxE [u(R)]
instead of maxu (E[R]).

As the expectation of a random variable function is the function of the random vari-
able expectation if and only if the transformation is linear, most of the time, DN (x) =

E
[∏P

i=1 (di (Yi|x))wi
]
6= ∏P

i=1 (di (E [Yi|x]))wi = DC(x) and xNopt 6= xCopt.
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As, in practice, the quantity DN (x) is unknown, it has to be estimated. Steuer (2000)
proposed to approximate for each design point x ∈ χ the distribution of D(x) by Monte-
Carlo simulations on the basis of the model error distribution often assumed to be Normal.
This is an heavy procedure, especially if there is more than two optimized properties and
a large experimental domain χ to explore. In addition, his procedure does not allow to
quantify the uncertainty of the estimated DN (x) : D̂N (x).

To avoid intensive use of Monte-Carlo simulations, Weber and Weihs (2003) and Gov-
aerts and Le Bailly de Tilleghem (2005) suggest to derive analytically the distribution of
D(x) on the basis of the model random error distribution using the density transformation
theorem. Unfortunatly this is a complex task, often impossible due to the step of responses
aggregation. In addition, like Steuer simulations based procedure, the propagation of the
uncertainty of the estimated parameters on the distribution of D(x) and its expectation can
not be quantified.

There is a clear need of a general method, easily applicable in pratice, to estimate DN (x).
More precisely, the rest of the paper proposes solutions to the following problems:

Section 5: Estimation of the expected desirability DN (x).

The Delta method is first proposed to approximate DN (x) as a function of E[Yi|x] and
V [Yi|x]. Then, an estimator D̂N (x) is defined by replacing the unknown quantities in
the approximation by their estimators Ê[Yi|x] and V̂ [Yi|x].

Section 6: Quantification of the uncertainty of D̂N (x).

The Delta method theorem is used to construct a nonsymmetric confidence interval
for DN (x).

Section 7: Construction of an equivalence zone around the optimal solution in χ.

By an adequate optimization algorithm, the factors settings x̂Nopt that maximize D̂N (x)

over χ must first be found. Then, as the uncertainty of D̂N (x̂Nopt) and the uncertainty

of D̂N (x) for any point x ∈ χ can be quantified, this information can be used to
search through χ the set of points x that do not have significantly different expected
desirabilities. This is called the optimal equivalence zone.

Section 8: Construction of a prediction interval on D(x) for any x in χ.

The exact distribution of D(x) or simulations can be applied to construct a prediction
interval on D(x).

5 Estimation of the expected desirability index DN (x)

The Delta method is often used to approximate the variance of a function of random vari-
ables. This method can also be used to approximate expectation. Indeed, on the basis of
the Taylor expansion of a differentiable function h of random variables Y1, Y2, . . . , Yp, it can
be shown that the following second order approximations hold (Hahn and Shapiro, 1969):
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E [h (Y1, Y2, ..., Yp)] ≈ h (E[Y1], E[Y2], ..., E[Yp]) (10)

+
1

2

p∑

i=1

[
∂2h

∂Y 2
i

V [Yi]

]
+

p∑

i<j

[
∂2h

∂Yi∂Yj
Cov(Yi, Yj)

]

V [h (Y1, Y2, ..., Yp)] ≈
p∑

i=1

[(
∂h

∂Yi

)2

V [Yi]

]
(11)

+ 2

p∑

i<j

[(
∂h

∂Yi

)(
∂h

∂Yj

)
Cov(Yi, Yj)

]

where the derivatives are evaluated in the expectation of the random variables : Yi = E[Yi].
If we assume that, conditionally to x, the responses are independent, i.e. (Yi|x)q (Yj |x)

∀i 6= j, the approximation (10) can be rewritten as

E [h (Y1, ..., Yp) |x] ≈ h (E[Y1|x], ..., E[Yp|x]) +
1

2

p∑

i=1

[
∂2h

(∂Yi)2
V [Yi|x]

]
(12)

where the derivatives are evaluated in the conditional expectations E[Yi|x].
As the DI is a function of the random responses Y1|x, Y2|x, . . . , Yp|x, formula (12) can

be applied to approximate the expected DI conditionally to x to the second order as :

DN (x) = E [D(x)] = E

[
p∏

i=1

(di (Yi))
wi |x

]
≈
[
p∏

i=1

(di (E [Yi|x]))
wi

]
· (1 +B(x)) (13)

where B(x) is given by :

B(x) =
1

2

p∑

i=1




wi(wi − 1)

(
∂di(Yi)
∂Yi

di(E[Yi|x])

)2

+ wi

∂2di(Yi)
∂Y 2

i

di(E[Yi|x])


 · V [Yi|x]


 (14)

The first part of (13) is the classical desirability DC(x), and the half sum B(x) in the
second term is a kind of bias correction. This approximation of DN (x) is possible for
differentiable DF. This is not the case for the Derringer and Suich DF but those functions
can be easely approximated by other differentiable functions as shown in Figure 1 or by the
DF proposed by del Castillo et al. (1996).

DN (x) can be estimated by replacing in the approximation (13-14) the unknown quan-
tities E[Yi|x] and V [Yi|x] by their usual estimators, the predictions given by the estimated
models Ê(Yi|x) and the estimators of the residual variances V̂ (Yi|x) = σ̂2

εi . These are
given explicitely in section 2 for the linear regression model. In B(x), the first and second
derivatives of di(Yi) are also evaluated in Ê(Yi|x).

For any point x ∈ χ, formulas (13-14) provide then a general method to approximate and
estimate the new desirability criteria DN (x) defined in (9). This allows to find estimated
optimal factors settings x̂Nopt in χ using an adequate algorithm. This optimal solution may

be different of the classical one x̂Copt due to the bias term B(x) present in the new desirability
criteria :

D̂N (x) = Ê[D(x)] = D̂C(x) · (1 + B̂(x)) (15)
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6 Quantification of the uncertainty on Ê [D(x)].

The Delta method theorem (von Mises, 1947) can be used to derive the asymptotic properties
of our estimator D̂N (x) and build a confidence interval for DN (x).

The Delta method theorem: Suppose that θ is a vector of parameters estimated on n

observations by θ̂ with
√
n(θ̂−θ)

d→ N(0,Σ) and g is a continuously differentiable function

then
√
n(g(θ̂)− g(θ))

d→ N(0, ∂g∂θΣ∂g′

∂θ ).

In order to apply this theorem to D̂N (x) = D̂C(x) ·
(

1 + B̂(x)
)

, let us first note that the

uncertainty on B̂(x) is negligeable compared to the uncertainty of the term D̂C(x). In addi-
tion, as D̂C(x) is a continuously differentiable function of Ê(Y|x) = (Ê(Y1|x), ..., Ê(Yp|x)),

Ê(Y|x) becomes θ̂ in the Delta theorem with expected valueE(Y|x) and variance-covariance
matrix Σ = diag(V (Ê(Y1|x)), ..., V (Ê(Yp|x))) since, conditionally to x, the Yi’s are consid-

ered as independent. In the linear case, V (Ê(Yi|x)) is given by (5).
On the other hand, the conclusion that Ê [D(x)] would be asymptotically normal is not

realistic since it is bounded on the [0, 1] interval. In order to better fullfil this normality
assumption, Cahya (2002) and Ding et al. (2003) suggest to apply a logit transformation to
Ê [D(x)] before applying the theorem to get an unbounded support (−∞,∞). In addition
this insures that resulting confidence intervals are included in the interval [0, 1].

As logit(Ê [D(x)]) is also a continuously differentiable function of Ê(Y|x), the Delta
method theorem leads to the following result:

logit
(
Ê [D(x)]

)
d→ N

(
logit (E [D(x)]) , V

[
logit

(
Ê [D(x)]

)])
(16)

The variance V
[
logit

(
Ê [D(x)]

)]
can be estimated as a function of Ê[Yi|x] and V̂ [Yi|x]:

V̂
[
logit

(
Ê[D(x)]

)]
≈ 1
(
Ê[D(x)].

(
1− Ê[D(x)]

))2 · V̂ [Ê[D(x)]] (17)

where

V̂ [Ê[D(x)]] ≈
(

1 + B̂(x)
)2

· V̂ [D̂C(x)] (18)

and

V̂ [D̂C(x)] ≈
p∑

i=1





wi ·

∂di(Ê[Yi|x])

∂Ê[Yi|x]

di(Ê[Yi|x])
· D̂C(x)




2

· V̂
[
Ê[Yi|x]

]

 (19)

An asymptotic (1−α) · 100% confidence interval for logit (E[D(x)]) can then be derived
as

logit
(
Ê[D(x)]

)
± z1−α/2 ·

√
V̂
[
logit

(
Ê[D(x)]

)]
(20)
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Then, a (1−α) · 100% confidence interval for DN (x) can be obtain by transforming (20)
using the inverse logit transformation:

exp
logit(D̂N(x))±z0,975·

q
V̂[logit(D̂N(x))]

1 + exp
logit(D̂N(x))±z0,975·

q
V̂[logit(D̂N(x))]

(21)

Such confidence interval can be constructed for any x ∈ χ to quantify the uncertainty of
the estimation D̂N (x). This interval is included in the [0, 1] interval and is not necessarily
symmetric.

7 Set up of an equivalence zone for xNopt

Using the estimator Ê[D(x)] (15), a value between 0 and 1 can be associated to any point
x ∈ χ representing the estimation of the expected DI of the solution x and the optimum
x̂Nopt that maximizes this quantity can be found using an adequate algorithm.

As the expected DI of the optimum found, E[D(x̂Nopt)], is not exactly known but estimated

by Ê[D(x̂Nopt)], x̂Nopt is not necessarly the true optimum, xNopt, and there is a subset of points in
χ that are associated to expected desirabilities not significantly different of the one associated
to the optimum found x̂Nopt.

We propose to define the optimal equivalence zone, EZ, as the subset of points x ∈ χ
such that the hypothesis E[DN (x)] = E[DN (x̂Nopt)] can not be rejected. This equivalence

zone contains solutions that can not statistically be differenciated from x̂Nopt.

In the preceeding section, the asymptotic distribution of logit
(
Ê[D(x)]

)
for any x ∈ χ

has been established using the Delta method theorem (16). Exactly the same tool can
be used to derive the asymptotic distribution of any other differentiable transformation of
Ê[D(x)] like the logarithm. Cahya (2002) observed in his simulations that a difference of
log is better approximated by a Normal than a difference of logit. That’s why we propose
to construct the equivalence zone around x̂Nopt on the basis of the asymptotic distribution of
the difference

∆̂D(x, x̂Nopt) = log
(
Ê[D(x)]

)
− log

(
Ê[D(x̂Nopt)]

)
.

As both log
(
Ê[D(x)]

)
and log

(
Ê[D(x̂Nopt)]

)
are asymptotically Normal, their difference

is also asymptotically Normal:

∆̂D(x, x̂Nopt)
d→ N

(
∆D(x, x̂Nopt), V (∆̂D(x, x̂Nopt))

)
(22)

with
∆D(x, x̂Nopt) = log (E[D(x)]) − log

(
E[D(x̂Nopt)]

)
(23)

and

V (∆̂D(x, x̂Nopt)) = V
(

log
(
Ê[D(x)]

))
+ V

(
log
(
Ê[D(x̂Nopt)]

))
(24)

−2 · Cov
(

log
(
Ê[D(x)]

)
, log

(
Ê[D(x̂Nopt)]

))
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A formula similar to (17) can be applied to estimate the variances V
(

log
(
Ê[D(x)]

))

and V
(

log
(
Ê[D(x̂Nopt)]

))
. The covariance between the two log cannot be neglected and

can be estimated once more by the Delta method theorem:

Ĉov
(

log
(
Ê[D(x)]

)
, log

(
Ê[D(x̂Nopt)]

))
≈ (25)

1 + B̂(x)

Ê[D(x)]
· Ĉov

[
D̂C(x), D̂C(x̂Nopt)

]
· 1 + B̂(x̂Nopt)

Ê[D(x̂Nopt)]

where

Ĉov
[
D̂C(x), D̂C(x̂Nopt)

]
≈ (26)

p∑

i=1


wi

∂di(Ê[Yi|x])

∂Ê[Yi|x]

di(Ê[Yi|x])
D̂C(x)


 · Ĉov

[
Ê[Yi|x], Ê[Yi|xNopt]

]
·


wi

∂di(Ê[Yi|xNopt])
∂Ê[Yi|x̂Nopt]

di(Ê[Yi|xNopt])
D̂C(xNopt)




In the case of linear regression model, we have :

Ĉov
[
Ê[Yi|x], Ê[Yi|xNopt]

]
= σ̂2

i z
′(Z′iZi)

−1ẑN
opt

For any point x ∈ χ, the asymptotic distribution of the difference ∆̂D(x, x̂Nopt) (22) can
then be used to construct a confidence interval for the true difference. The equivalence zone
around the optimum found x̂Nopt is constructed by screening the solutions space χ to select
points x for which this confidence interval contains 0. At a level (1 − α) · 100%, it can be
formulated as follows :

EZ ≡ {x ∈ χ : 0 ∈ ∆̂D(x, x̂Nopt)± z1−α/2 ·
√
V̂ (∆̂D(x, x̂Nopt))} (27)

The confidence interval for ∆D(·, ·) can also be applied to any pair of points x1 and x2

in χ to check if their desirabilities are significantly different.
A similar methodology has been developped by Cahya (2002) but he works with the

classical index DC(x), the linear regression model and applies the Delta theorem to trans-
formations of the regression parameters instead of transformations of the expected predicted
responses. Moreover, his goal is to build a confidence zone for the true optimum xCopt, as
done in all former literature, while here we are only looking for a set of operating conditions
x ∈ χ for which the expected desirability does not significantly differ from the one of the
estimated optimum x̂Nopt. The advantage of our approach is that the equivalence zone is
much more simple to calculate. The Cahya methodology necessitates indeed to optimize an
objective function on χ for each x to decide if it belongs or not to the confidence zone.

8 Prediction interval for D(x)

As experimental responses are random variables, the result of a single experiment at a point
x of χ can not exactly be predicted and individual values prediction intervals are usually

12



calculated to quantify this uncertainty. In the linear model, the prediction variance for a
single observation Yi is given by V (Ŷi|x) in (6).

This implies that the DI for a single observation is also an unpredictable quantity and
one may be interested to derive a prediction interval for the desirability in x, D(x).

In this context, Trautmann and Weihs (2004) proposed a methodology to construct such
prediction interval from the analytical distribution function of D(x) that can be derived for
Harrington type DFs. From this interval, they construct a sort of optimal zone as a subset
of x in χ around the optimum xNopt such that the probability of having D(x) lying in a

prediction interval around D̂C(xNopt) is high. They take into account only the random model
error, ε, and neglect the propagation of the estimation error of their regression prediction
models (2) on DN (x).

Similarly, Govaerts and Le Bailly de Tilleghem (2005) have derived the analytical distri-
bution of D(x) for cumulative Normal DFs and can derive similar results.

When no analytical form for the distribution function of the DI exists, the best approach
is to derive the prediction interval through simulations. In the classical regression model,
one may simulate S possible responses in x, Yi|x, using the statistical distribution of Ŷi :

Yi − Ŷi
σ̂εi

2. (1 + z′i(Z
′
iZi)−1zi)

∼ t(ni − qi) (28)

Each simulated vector Ys = (Y s1 , Y
s

2 , ...Y
s
p ), s = 1, 2, . . . , S, will allow to calculate one

possible DI D(x)s and the prediction interval will be derived from the the quantiles of the
empirical distribution of (D(x)1, . . . , D(x)S).

9 Simulations study

To demonstrate that the confidence interval formula (21) for DN (x) works as well as the
equivalence zone around the optimum found (27), simulations are performed on a simple
optimization example.

Two responses, Y1 and Y2, have to be simultaneously optimized on a one factor x domain
(x ∈ [0, 1]). The first response, Y1, has to be maximized and the second response, Y2, has to
be minimized. Two third order models have been chosen such that they are not too simple
and such that their respective optimizations are not too competitive. They are represented
in Figure 2.

The Normal cdf is used to construct DFs as presented in Table 1. They depend on
parameters a and b fixed according to the acceptable responses values (Govaerts and Le
Bailly de Tilleghem, 2005). The first response is of the kind the higher, the better. Let’s
suppose that all values smaller than 1.5 are not at all desired and all values greater than 3
are equivalently hugely desired. Those lower and upper limits, LL1 = 1.5 and UL1 = 3, are
used to compute the two parameters of the desirability function as a1 = LL1+UL1

2 = 2.25

and b1 =
UL1−LL1+UL1

2

2 = 0.375. In this way, accordingly to the properties of the standard
Normal c.d.f., d1(1.5) = 0.023 and d1(3) = 0.977 and between 1.5 and 3, the desirability
increases. This DF is represented in Figure 3 as a function of Y1. The second response has
to be minimized. Let’s suppose that all values greater than UL2 = 1.25 are not at all desired
and all values smaller than LL2 = 0.5 are equivalently hugely desired. Those limits are used
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to compute the two parameters a2 = LL2+UL2

2 = 0.875 and b2 =
UL2−LL2+UL2

2

2 = 0.1875. In
this way, d2(1.25) = 0.023 and d2(0.5) = 0.977 and between 0.5 and 1.25, the desirability
decreases. This DF is represented in Figure 3 as a function of Y2. Both DFs are also
represented in Figure 4 as a function of x and, over the [0, 1] interval, the respective optima
are 0.373 for Y1 and 0.226 for Y2. Finally, the geometric mean DI is used to summarize
those two DFs, giving the same weight to both properties.

In this example, the difference between the 2 indexes, DN (x) and DC(x), is small as
shown in Figure 5. The resulting optima are closed to each other: xNopt = 0.288 and xCopt =
0.285.

Figure 2: Two responses, Y1 and Y2, to be respectively maximized and minimized on [0, 1]. The
respective optima are marked by vertical dashed lines and are 0.373 for Y1 and 0.226 for Y2

Figure 3: Desirability functions for Y1 and Y2 based on the Normal cdf : d1(Y1) and d2(Y2).

To first check the adequacy of the confidence interval for DN (x), the next simulation
was repeated 10000 times:
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Figure 4: Desirability functions for Y1 and Y2 based on the Normal cdf as functions of x. The
respective optima are marked by vertical dashed lines and are 0.373 for Y1 and 0.226 for Y2.

Figure 5: Difference between the classical use and the new use of desirability index: DN (x) and
DC(x) are represented by a continuous and a dashed thick curves respectively. The respective
optima are marked by vertical thin continuous and dashed lines, xNopt = 0.288 and xCopt = 0.285.
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Step 1: For each response, Y1 and Y2, generation of a sample of size n = 10 following the
the models given in Figure 2 and fit of a cubic regression model to the simulated data
(Figure 6).

Step 2: Estimation of DN (x) over the factor domain χ = [0, 1] using the fitted models and
our estimator (15) (Figure 7).

Figure 6: Example of the first step for one simulation run: the dots represent the generated
datasample on which the models are fitted. The continuous and the dashed lines represent respec-
tively the true and the estimated models.

Figure 7: Example of the second step for one simulation run: the continuous and the dashed lines
represent respectively the true and the estimated expected desirabilities.

From run to run, the estimated expected desirability can have very different shapes. For
any x ∈ χ = [0, 1], we have 10000 realisations of the distribution of our estimator D̂N (x).
Figure 8 compares the 2.5% and 97.5% quantiles of this simulated distribution and the
theoretical 95% confidence interval for DN (x) given by formula (21), using the true DN (x)
(12). The theoretical formula provides confidence intervals really similar to the simulations.
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Figure 8: Validation of the confidence interval: comparison of the 95% theoretical confidence
interval for DN (x) given by formula (21) using the true DN (x) - empty dots - and 95% simulated
confidence interval constructed on the basis of the quantiles 2.5% and 97.5% of the simulated
distribution for the estimator D̂N (x) - continuous thin lines -.
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We can conclude that the approximated asymptotic distribution given by the Delta
method theorem provides, in this example, quite accurate confidence intervals even if the
number of data is small.

Secondly, to check the adequacy of the equivalence zone around the optimum found, the
next simulation was repeated 10000 times:

Step 1: For each response, Y1 and Y2, generation of a sample of size n = 10 following the
models given in Figure 2 and fit of a cubic regression model to the simulated data
(Figure 6).

Step 2: Estimation of the difference between DN (x) and DN (xNopt) by computing D̂N (x)−
D̂N (xNopt) over the factors domain χ = [0, 1] using the fitted models (Figure 9).

Figure 9: Example of the second step for one simulation run: the first graph compares the true
espected desirability index DN (x) (continuous curve) and the estimated one DN (x) (dashed curve)
and the second graph presents the resulting estimated difference of expected desirability between
any point x in [0, 1] and the optimum xNopt, D̂

N (x)− D̂N (xNopt).

For any x in [0, 1], we have 10000 realisations of the distribution of the estimator D̂N (x)−
D̂N (xNopt). The simulated equivalence zone around the optimum xNopt is constructed by
retaining points x for which the intervals determined by the 2.5% and 97.5% quantiles
of this simulated distribution contain 0, meaning that, for those points x, DN (x) is not
significantly different of DN (xNopt). This simulated equivalence zone is compared on Figure

10 with the theoretical equivalence zone around xNopt, i.e. as defined by (27) where true
quantities are used instead of estimators. On this example, the theoretical equivalence zone
is exactlty the same as the one obtained by simulations: all points x ∈ [0.220, 0.333] are
equivalent to the optimum xNopt.

Note also that, in all performed simulations, the difference between DC(x) and DN (x) is
small compared to the uncertainty of the corresponding quantities D̂C(x) and D̂N (x). On
the presented example of this section, the difference between DC(x) and DN (x) on Figure
5 is indeed negligeable compared to the size of confidence intervals drawn in Figure 8.
Similarly, the difference between the two optima xCopt and xNopt (Figure 5) is small compared
to the size of the equivalence zone around the optimum (Figure 10).
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Figure 10: Validation of the equivalence zone around xNopt. Comparison of the equivalence zone

obtained by simulations of the distribution of estimated differences D̂N (x)− D̂N (xNopt) (continuous
thin vertical line) and the equivalence zone obtained with the theoretical formula (27) (dotted
vertical line). Both are the same, [0.220, 0.333]. The thick continuous curve is DN (x) and the thick
dashed vertical line is the true optimum xNopt.
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10 Conclusion

This paper proposes a new use of DI and a new methodology to quantify uncertainty of
estimated DI and estimated optimum. It generalizes and integrates existing literature on
the subject.

As Steuer (2000) emphasized, due to the model error term εi, each response for given
factors levels x, Yi|x, is a random variable. The classical use of DI as introduced by Har-
rington consists of summarising the desirability of expected optimized properties by a single
value between 0 and 1 (DC(x)) and neglecting the error term. Assuming that εi ∼ N(0, σ2

εi)
with known variance σ2

εi , Steuer suggested to take this available information into account by
considering the DI as a random variable and maximizing the expected DI of the responses
(DN (x)), applying to DI an idea previously introduced by von Neumann and Morgenstern
(1944) in utility theory field. To avoid intensive simulations, as the exact distribution of the
DI random variable can not, in most cases, be handeled easely, the Delta method is used to
approximate the expected DI up to second order terms. This is possible if the DFs are two
times differentiable.

The approximation of the expected DI by the Delta method depends on expected re-
sponses E[Yi|x] and on response variances V [Yi|x]. By replacing these usually unknown
quantities by their classical estimators, an estimator for the expected DI is obtained (D̂N (x)).
The Delta method theorem allows to derive the asymptotic distribution of our estimator and
build a (1−α) ·100% confidence interval for the true expected DI. This theorem may also be
used to derive the asymptotic distribution of the difference of the estimated expected DI of
two solutions and construct an equivalence zone around the estimated optimum, gathering
factors levels having non-significantly different expected DI as the optimum found.

Though simulations, we found that the Delta method provides a good second order
approximation of the expected DI. In most cases, the difference between the classical use
of DI, DC(x), and the new one, DN (x), is small as well as the resulting optima, xCopt and

xNopt. The most important improvement is the new methodology based on the Delta method
theorem to measure the prediction error propagation on the estimated expected DI. This
allows to compare the estimated expected DI of two solutions taking into account their
incertitude and constructing an equivalence zone around the optimum found. Simulations
reveals that this uncertainty porpagation is much more important in practice than the bias
correction between DC(x) and DN (x).
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