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present a bootstrap method that gives confidence interval estimates based on sampling
distributions, and which have good coverage properties that improve with sample size.
In addition, researchers who estimate PSF models typically reject models, samples, or
both when residuals have skewness in the “wrong” direction, i.e., in a direction that
would seem to indicate absence of inefficiency. We show that correctly specified mod-
els can generate samples with “wrongly” skewed residuals, even when the variance of
the inefficiency process is nonzero. Our bootstrap method provides useful information
about inefficiency and model parameters irrespective of whether residuals have the
skewness in the desired direction. We also find that a commonly-used Wald test used
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∗Simar: Institut de Statistique, Université Catholique de Louvain, Voie du Roman Pays 20, B 1348
Louvain-la-Neuve, Belgium; email simar@stat.ucl.ac.be. Wilson: Department of Economics, University of
Texas at Austin, 1 University Station C3100, Austin, Texas 78712 USA; email wilson@eco.utexas.edu.
Research support from the “Interuniversity Attraction Pole”, Phase V (No. P5/24) from the Belgian Gov-
ernment, and from the Texas Advanced Computing Center is gratefully acknowledged. Any remaining errors
are solely our responsibility.



1 Introduction

Parametric stochastic frontier (PSF) models introduced by Aigner et al. (1977) and Meeusen

and van den Broeck (1977) specify output, cost, etc. in terms of a response function and

a composite error term. The composite error term consists of a two-sided error represent-

ing random effects and a one-sided term representing technical inefficiency. Since their

introduction, several hundred papers, describing either methodological issues or empirical

applications of these models, have appeared in the literature. Bauer (1990), Greene (1993),

and Kumbhakar and Lovell (2000) provide overviews of developments in this area in varying

levels of detail.

PSF models are typically estimated by the maximum likelihood (ML) method. Bauer

(1990), Bravo-Ureta and Pinheiro (1993), and Coelli (1995) observe that most applied papers

describe estimation of cross-sectional models with errors composed of normal and half-normal

random variables. Interest typically lies in making inferences regarding (i) marginal effects,

returns to scale, or other features of the response function; (ii) technical efficiency for indi-

vidual firms, either real or hypothetical; or (iii) mean technical efficiency. With regard to (ii)

and (iii), many papers have relied only on point estimates, although interval estimates are

possible using a “conventional” approach suggested by Horrace and Schmidt (1996), where

one obtains intervals based on percentiles of the estimated distribution of the one-sided error

term, conditional on the composite error. These intervals, however, are not based on sam-

pling distributions of the estimators of inefficiency, and consequently should not be expected

to have good coverage properties. This is confirmed by our Monte Carlo experiments.

It is apparently common practice for applied researchers to reject models, samples, or

both whenever residuals in PSF models have the “wrong” skewness (e.g., positive skewness

in the case of a production frontier, or negative skewness in the case of a cost frontier). In

fact, even correctly specified models can, and often do, generate samples where residuals

are skewed in the “wrong” direction. As demonstrated below, this happens even when the

variance of the one-sided inefficiency process is nonzero. In such cases, for a linear response

function, Waldman (1982) showed that the ML estimates are equivalent to ordinary least

squares (OLS) estimates for the slope parameters and the variance of the two-sided error

process, and that the ML estimate of the shape parameter for the one-sided process is zero.
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The OLS variance-covariance matrix estimator is invalid, however, and the Hessian of the

log-likelihood is singular when residuals have the “wrong” skewness.

We provide a bootstrap method that overcomes many of these difficulties, provided the

true variance of the one-sided process is not zero. The method can be used for inference

about either individual model parameters or functions of model parameters (e.g., scale elas-

ticities, etc.), as well as both mean inefficiency and inefficiency of individual firms. Monte

Carlo experiments show that confidence intervals estimated by our bootstrap method have

good coverage properties that improve as sample size increases. In addition, in cases where

residuals have the “wrong” skewness, our method reveals useful information about model

parameters, mean inefficiency, and inefficiency of individual firms. Our method provides

such information even when the variance of the one-sided inefficiency process is estimated

at zero.

Wald tests are commonly used to test the null hypothesis of no inefficiency, i.e., that the

variance of the one-sided process is zero. However, additional Monte Carlo experiments show

that the size properties of this test are very poor. A small modification of our bootstrap

procedure allows it to be used for testing the null hypothesis of no inefficiency, and the same

Monte Carlo experiments show that a bootstrap test as well as a likelihood-ratio test perform

well in terms of both size and power.1

Asymptotic properties of ML estimators are well-known, but (analytical) finite sample

properties in the context of PSF models remain unknown. To date, only a few Monte Carlo

studies with frontier models are available. Aigner et al. (1977) provided an examination of

the performance of the ML estimator in small samples, while Olson et al. (1980) compared

the ML estimator and a modified OLS (MOLS) estimator based on the idea of using moment

conditions to correct the intercept term estimated by ordinary least squares. Both studies

focused on mean-square error (MSE) properties of the parameter estimates; although limited

by today’s standards for Monte Carlo experimentation, these papers are remarkable for what

they were able to do with the anemic computing power available in the 1970s.

More recently, Banker et al. (1988) compared ML estimators of technical efficiency with

1As noted above, our bootstrap does not provide valid confidence intervals when the variance of the
one-sided process is zero, since the sampling distribution of one or more estimators will be discontinuous.
The problem is similar to the one discussed by Andrews (2000), but does not affect one-sided tests of zero
variance in the one-sided process.
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non-parametric, data envelopment analysis (DEA) estimators in a Monte Carlo framework.

Gong and Sickles (1990, 1992) made similar comparisons, but introduced panel data tech-

niques. The comparisons with DEA estimators seem, in retrospect, rather curious, since

DEA estimators are now known to be inconsistent in the presence of two-sided noise as in

the stochastic frontier model (see Simar and Wilson, 2000, for discussion). Coelli (1995)

considered MSE properties of ML parameter estimates as well as estimates of mean tech-

nical efficiency over a sample. Kumbhakar and Löthgren (1998) examine the coverages of

classical confidence interval estimates for inefficiency, but failed to hold the points at which

inefficiency was estimated constant over their Monte Carlo trials.

Our story develops as follows: notation and a PSF model are defined in Section 2;

estimation of technical efficiency is also discussed. Section 3 provides a discussion of inference

in PSF models, first about model parameters and then about technical efficiency. Our

bootstrap method is described in Section 4, and Section 5 gives details of our Monte Carlo

experiments and a discussion of the results. The final section concludes.

2 The Model

The stochastic frontier model can be written in general terms as

y = g(x | β)eε, (2.1)

y ∈ R
1
+ is the scalar quantity of output produced from (exogenous) input quantities x ∈ R

p
+,

and ε is composed of a two-sided error term v reflecting noise and a one-sided error term

u ≥ 0 reflecting technical inefficiency. We consider production functions and write

ε = v − u, (2.2)

but of course the minus sign on the right-hand side of (2.2) could be changed to a plus sign

to consider cost functions.

In applications, the two-sided error term is invariably assumed normally distributed:

v ∼ N(0, σ2
v). (2.3)

Various distributions have been assumed for the one-sided term; e.g., half-normal, truncated
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(other than at zero) normal, gamma, exponential, etc.2 We assume u is distributed half-

normal on the non-negative part of the real number line:

u ∼ N+(0, σ2
u). (2.4)

Following common practice, we assume the v and u are each identically, independently

distributed (iid).

The density of ǫ can be found using either the convolution theorem or characteristic

functions, yielding

f(ε) =
1

σ
√

π
2

[
1 − Φ

(
ε

σ

√
γ

1 − γ

)]
exp

(
−

ε2

2σ2

)
, (2.5)

where σ2 = σ2
v +σ2

u, γ = σ2
uσ

−2, and Φ(·) denotes the standard normal distribution function.

Note that the variance of ε is given by σ2
ε =

(
π−2

π

)
σ2

u + σ2
v ; the term σ2 is only used to

re-parameterize the model.

Given a sample Sn = {(xi, yi)}
n
i=1 of independent observations from the model represented

by (2.1)–(2.4), the log-likelihood

LLF = −
(n

2

)
log

(π

2

)
−

(n

2

)
log σ2 +

n∑

i=1

log

[
1 − Φ

(
[log yi − log g(xi | β)]γ1/2

σ(1 − γ)1/2

)]

−
1

2σ2

∑

i=1

[log yi − log g(xi | β)]2 (2.6)

can be maximized with respect to β, σ2, and γ to obtain estimates β̂, σ̂2, and γ̂. ML

estimates of σ2
u and σ2

v can be recovered from the relationships σ̂2
u = γ̂σ̂2 and σ̂2

v = σ̂2 − σ̂2
u.

Here, we use the parameterization of Battese and Corra (1977); alternatively, the density

in (2.5) and the log-likelihood in (2.6) may be written in terms of σ2 and λ = σu

σv
, which was

the parameterization used by Aigner et al. (1977). Note that λ2 = γ
1−γ

. The parameterization

used here has the advantage that γ ∈ [0, 1], while λ ∈ [0,∞); using γ simplifies numerical

maximization of the log-likelihood function.

2The choice of one-sided distribution is not innocuous. If the one-sided distribution for u can be made to
resemble a normal distribution with certain parameter combinations, estimation can be very difficult with
sample sizes commonly found in the literature. This was demonstrated for a normal/gamma convolution
by Ritter and Simar (1997), but the problem could also be expected if the distribution for u was specified
as truncated normal, with the location parameter to be estimated (instead of constrained to zero, as in the
half-normal distribution).
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Now consider an arbitrary, given point (x, y) ∈ R
p
+ × R

1
+; this point might be one of the

observations in Sn, or some other point of interest, perhaps representing input and output

quantities of an hypothetical firm. Associated with this point is an error, ε = log y− log g(x |

β). If (x, y) is an actual observation, then from (2.2) ε is determined by realizations of the

random variables v and u. Otherwise, if (x, y) represents a hypothetical firm, it is appropriate

to think of ε as the result of hypothetical draws from N(0, σ2
v) and N+(0, σ2

u).

Battese and Coelli (1988) note that it is important to clearly define an appropriate mea-

sure of technical efficiency that is to be estimated, and that the literature is muddled on this

point. Some (e.g., Jondrow et al., 1982) have defined technical inefficiency as “the shortfall

of output (yi) from its maximum possible value”; in ratio form, this amounts to defining

technical inefficiency for the ith firm as eui. In the context of cross-sections, since realiza-

tions of eu cannot be observed, it is sensible to define technical inefficiency corresponding to

the point (x, y) as the conditional expectation

τ ≡ E
(
e−u | ε

)
. (2.7)

Since u ≥ 0, τ ∈ (0, 1]. Unlike eu, which is not identified, the quantity in (2.7) can be

estimated consistently by the ML method. A firm with technical efficiency equal to τ is

expected to produce a level of output that is τ × 100-percent of the technically efficient level

of output corresponding to the levels of inputs used by this firm. The error ε is estimated

by the residual

ε̂ = log y − log g(x | β̂). (2.8)

Some algebra reveals that the conditional density of u, given ε, is

f(u | ε) =

{
σ−1
∗ φ

(
u−µ∗

σ∗

) [
1 − Φ

(
−µ∗

σ∗

)]−1

∀ u ≥ 0;

0 otherwise,
(2.9)

where

µ∗ = −
εσ2

u

σ2
= −εγ, (2.10)

σ2
∗ =

σ2
uσ

2
v

σ2
= σ2γ(1 − γ), (2.11)

and φ(·) denotes the standard normal density function. Hence, conditional on ε, u is dis-

tributed N+(µ∗, σ
2
∗).

5



The conditional density in (2.9) can be used to derive

E(u | ε) = µ∗ + σ∗φ

(
−µ∗

σ∗

) [
1 − Φ

(
−µ∗

σ∗

)]−1

, (2.12)

as in Jondrow et al. (1982), who regard estimates of this conditional expectation as a point

estimate for u. However, replacing the unknown parameters in (2.12) with ML estimates

yields an ML estimate of E(u | ε), which is different from u. Some authors have estimated

technical efficiency by τ̃ = exp
(
−Ê(u | ε̂)

)
, obtained by substituting ε̂, σ̂2

u, σ̂2
v , and σ̂2 for

the corresponding true values ε, σ2
u, σ2

v , and σ2 in (2.10)–(2.11), and then substituting the

resulting estimates µ̂∗ and σ̂∗ into (2.12) to obtain Ê(u | ε̂). Alternatively, it is easy to

compute

τ = E
(
e−u | ε

)
=

[
1 − Φ

(
σ∗ −

µ∗

σ∗

)][
1 − Φ

(
−

µ∗

σ∗

)]−1

exp

(
−µ∗ +

σ2
∗

2

)
,

which appears in Battese and Coelli (1988). This leads to the ML estimator

τ̂ = Ê
(
e−u | ε̂

)
(2.13)

of τ obtained by replacing µ∗ and σ2
∗ in (2.13) with ML estimators µ̂∗, and σ̂2

∗ (recall that

µ∗ is defined in terms of ε in (2.10); hence µ̂∗ depends on ε̂).

The expectation operator of course has only linear properties; i.e., E (eu | ε) 6= eE(u|ε).

The difference between exp [E(u | ε)] and E (e−u | ε) can be substantial. For example, if

σ2
u = σ2

v = 1, then e−E(u|ε)/E (e−u | ε) = 0.6644, 0.5255, and 0.3798 for ε = −1, 0, and 1,

respectively. Consequently, we shall focus on the second estimator, τ̂ , in all that follows.

3 Classical Inference in the Stochastic Frontier Model

3.1 Inference about model parameters:

The standard approach to inference in stochastic frontier models relies on asymptotic nor-

mality in the case of the parameter estimates, and estimated percentiles of the distribution

of e−u conditional on ε̂ in the case of technical efficiency. The presence of a boundary in the

support of u poses some problems. Lee (1993) derives the asymptotic distribution on the

maximum likelihood estimator for the case where γ = 0 (implying σ2
u = 0). Lee observes (i)

that the information matrix is singular in this case; (ii) that the likelihood ratio statistic for
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testing the null hypothesis γ = 0 is asymptotically distributed as 1
2
χ2(0) + 1

2
χ2(1), i.e., as

a mixture of a degenerate chi-square distribution with a unit mass at zero and a chi-square

distribution with one degree of freedom; and (iii) the convergence rates of the estimators of

the intercept term and of γ are slower than the usual O
(
n−1/2

)
parametric rate. For cases

where γ > 0 but close to zero, Lee shows that the first-order normal approximation for γ

can be poor as γ approaches zero.3

Unfortunately, even if γ is not close to zero, similar problems arise in finite samples.

Aigner et al. (1977) noted that in some finite samples, the composite residuals in (2.1) may

have positive skewness. In such cases, the ML estimator of γ will be zero, while the ML

estimators of σ2 and slope parameters will be equal to the corresponding OLS estimators

in the case of a linear response function, as noted by Waldman (1982). This was discussed

briefly in Olson et al. (1980) and confirmed in their Monte Carlo experiments. Both Aigner

et al. and Olson et al. (1980) as well as others have referred to this as a “failure” of the

ML estimator, but this terminology is misleading. As Lee (1993) notes, the estimators are

identifiable, even though the negative of the Hessian of the log-likelihood in (2.6) cannot be

inverted when γ = 0 (or when γ is replaced by an estimate γ̂ = 0) due to singularity. The

problem is not a failure of the ML method per se, but rather a difficulty for inference.

A simple Monte Carlo experiment illustrates that the problem can be severe for reason-

able, plausible values of the model parameters. Table 1 shows the proportion among 1,000

samples of the composite error ε from the normal/half-normal convolution with density given

by (2.5) resulting in positive skewness within a given sample, for various samples sizes n and

ratios λ2 = σ2
u/σ

2
v . The results in Table 1 show, for example, that for λ2 = 1, almost 1/3

of samples of size n = 100 will have skewness in the “wrong” direction. Of course, the

problem goes away asymptotically, but at a rate that depends on the value of λ2. For the

case where λ2 = 1, even with n = 1, 000 observations, about 3.5 percent of samples will have

positive skewness. If λ2 = 0.5—which is far from implausible in applied studies—even with

1,000 observations, one should expect that about 22.5 percent of samples will have positive

skewness. For smaller values of λ2 the problem becomes even more severe. At λ2 = 0.1, even

with 100,000 observations, about 20 percent of samples will exhibit positive skewness.

3Lee (1993) works in terms of the parameterization of Aigner et al. (1977), using λ instead of γ. However,
the results described here hold after straightforward substitution.
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The results in Table 1 imply that in finite samples, the sampling distribution of the ML

estimators for parameters in the model (2.1) are necessarily far from normal in many cases.

For example, if λ2 = 1 and n = 100, the sampling distribution of the ML estimator γ̂ will

have a mass of approximately 0.3 at zero. Of course, the sampling distribution is normal

asymptotically provided γ is not equal to either 0 or 1. But, the results in Table 1 indicate that

asymptotic normal approximations are, in many cases, not particularly useful for inference

about the parameters of the model when samples are finite, even if γ is not very close to 0.

In fact, conventional inference is unavailable in many cases, since the negative Hessian of the

log-likelihood in (2.5) is singular whenever γ is replaced by an estimate equal to zero. Again

for the case where λ2 = 1, n = 100, conventional inference based on asymptotic normality is

undefined for almost 1/3 of all cases.

As noted in Section 1, it is apparent that when applied researchers encounter residuals

with the “wrong” skewness, they typically either (i) obtain a new sample, or (ii) to re-

specify the model. Indeed, the user’s manual for the widely-used LIMDEP software package

(Greene, 1995, Section 29.3) advises users that “If this condition emerges, your model is

probably not well specified or the data are inconsistent with the model.” Moreover, we

know of no published papers reporting an estimate of zero for the variance parameter of the

one-sided component in a stochastic frontier model. Yet, the results in Table 1 make it clear

that even when the PSF being estimated is the true model, one should expect to sometimes

obtain estimates γ̂ = 0 (or the equivalent in models where other one-sided distributions are

specified).

Presumably, the researcher who seeks to estimate a model such as the one in (2.1)–

(2.4) must believe that the model is at least a good approximation of the underlying data-

generating process (DGP), if not the correct specification. Otherwise, he would estimate

a different model. Changing the model specification simply because residuals are skewed

in the wrong direction is likely to lead to a mis-specification, particularly when the DGP

produces finite samples yielding positively skewed residuals with some non-zero frequency.

Moreover, it is well-known that classical inference assumes that the model specification is

chosen independently of any estimates that are obtained; specification-searching introduces

problems of bias in both parameter estimates as well as variance-covariance estimates (see

Leamer, 1978 for discussion).
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Note that if one were to discard estimates γ̂ = 0 and draw a new sample without changing

the model specification, until an estimate γ̂ > 0 is obtained, this would be tantamount to

imposing a complicated conditioning on the underlying model. This point is crucial. If the

true model is the one represented by (2.1)–(2.4), where the v and u are iid, then we have seen

that unless the variance ratio λ2 is sufficiently large, one should expect to sometimes draw

samples with positive skewness in the composite residuals with sample sizes of the same order

as those used in published applications. If one were to believe that the true model can only

generate finite samples with negatively-skewed residuals, then such a model would be very

different from the ones that have been estimated, and different from the one in (2.1)–(2.4).

Indeed, to ensure that only samples with negative skewness can be generated, one would

have to impose a complicated correlation structure that would ensure that whenever a large,

positive value v is drawn, a sufficiently large value of u is also drawn. We know of no instance

in the literature where such a model has been estimated. On the contrary, models such as

(2.1)–(2.4) have been estimated, and this model is clearly capable of generating samples with

positive skewness; moreover, it will do so with a frequency that depends on λ2 and n. More

importantly, values of λ2 and n that are plausible in applications result in relatively high

frequencies of samples with positive skewness.

If a model such as (2.1)–(2.4) is to be estimated, and the researcher has the bad luck to

draw a sample that yields positively-skewed residuals, the proper action would be to increase

the sample size. Positively skewed residuals should not be taken as evidence that the model

is misspecified.

Two software packages are commonly used to estimate stochastic frontier models: (i)

the commercial package known as LIMDEP (Greene, 1995), and (ii) a freeware package

known as FRONTIER (Coelli, 1996); see Sena (1999) and Herrero and Pascoe (2002) for

reviews of these packages. The two packages are rather different in their treatment of cases

where composite residuals have the “wrong” skewness. In both packages, ordinary least

squares (OLS) estimates are first obtained to serve as starting values after adjusting the

intercept and variance terms using the MOLS estimator. In the case of LIMDEP, when the

OLS residuals have positive skewness, the program stops with a message stating, “Stoch.

Frontier: OLS residuals have wrong skew. OLS is MLE.” While it is indeed true that the

ML parameter estimates of β and σ2 are equivalent to the OLS estimates in such cases,
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the OLS standard error estimates that are reported should not be taken as estimates of the

standard error of the ML estimates. The OLS standard error estimates are conditioned on

γ = 0, and consequently understate the true standard errors since uncertainty about γ is

ignored.4 Indeed, conventional standard error estimates of the ML estimates are unavailable

due to singularity of the negative Hessian of the log-likelihood in this case.

With FRONTIER, estimation proceeds even if the OLS residuals have positive skewness.

After the OLS estimates have been obtained, a grid search procedure is used to find a

starting value for γ; then these starting values are used in the DFP algorithm (Davidon,

1959; Fletcher and Powell, 1963). If the OLS residuals have positive skewness, FRONTIER

returns a very small estimate for γ, but typically not zero. In addition, FRONTIER does

not use the inverse negative Hessian to estimate the variance-covariance matrix, but rather

the DFP direction matrix, which is an approximation of the inverse negative Hessian. The

DFP algorithm is based in part on approximating the objective function by a quadratic;

the accuracy of the approximation of the Hessian by the DFP direction matrix will suffer

if the algorithm iterates only a few times or if the objective function is far from quadratic.

Inattentive users may be misled by the fact that FRONTIER returns estimates of variance

for the parameter estimates in all cases, even though these are clearly invalid when the OLS

residuals have positive skewness.

Another common practice when estimating PSF models is to test for the existence of

inefficiency. In the model in Section 2, this is equivalent to testing H0 : γ = 0 against

H1 : γ > 0. Coelli (1995, p. 251) notes that

“The first test of this hypotheses was reported in Aigner et al. (1977), where the

ratio of the ML estimate of σ2
u to its estimated standard error was observed to be

quite small.... This Wald test, or a slight variant, has been explicitly or implicitly

conducted in almost every application of this stochastic frontier model since this

first application.”

Indeed, Coelli (1995) reports results obtained for Monte Carlo experiments using code

4Neither the output from the LIMDEP program nor the accompanying manual suggest that the OLS
standard error estimates should be taken as estimates of the standard error of the ML estimates when the
OLS residuals are positively skewed. Nor do we know of any cases where one has done so; rather, as discussed
earlier, we expect that many applied users are tempted to draw a new sample at this point, or to re-specify
their model, even though residuals with positive skewness can easily arise when (2.1)–(2.4) is the correct
specification.
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from the FRONTIER package with numbers of observations n ∈ {50, 100, 400, 800} and

11 different values of γ ranging from 0 to 1. Rejection rates for Wald tests of the null

hypothesis H0 : γ = 0 are reported. To implement the Wald tests, estimates of the standard

error for γ̂ are needed, and Coelli (1995, p. 251) reports that these were approximated by

taking the square root of the appropriate diagnonal element of the DFP direction matrix.

The entire exercise is curious, since under the null, the Cramér-Rao regularity conditions

are not satisfied and the Hessian of the log-likelihood is singular as discussed above.5 With

little surprise, Coelli (1995) finds that this Wald test has poor size properties.6

3.2 Inference regarding technical efficiency

The problems surrounding inference about model parameters also affect inferences about

technical efficiency. In addition, making inferences about inefficiency presents further prob-

lems as discussed below. In applications, researchers are typically interested in inefficiencies

corresponding to individual firms as well as the mean level of inefficiency.

Inefficiencies for specific firms are estimated by τ̂ defined in (2.13); these estimates are

necessarily conditional on an estimated residual ε̂. Recall from (2.9) that u | ε ∼ N+(µ∗, σ
2
∗).

Simple algebra reveals that percentiles ρα defined by Pr(u ≤ ρα | ε) = α are given by

ρα(ε) = µ∗ + σ∗Φ
−1

[
1 − (1 − α)Φ

(
µ∗

σ∗

)]
, (3.1)

where Φ−1(·) denotes the standard normal quantile function. Necessarily, the interval
(
ρα/2(ε), ρ1−α/2(ε)

)
or

(
µ∗ + σ∗Φ

−1

[
1 −

α

2
Φ

(
µ∗

σ∗

)]
, µ∗ + σ∗Φ

−1

[
1 −

(
1 −

α

2

)
Φ

(
µ∗

σ∗

)])
(3.2)

gives a (1 − α) × 100-percent probability interval for u | ǫ, meaning that asymptotically,

(1 − α) × 100-percent of all draws from N+(µ∗, σ
2
∗) will fall within this interval. Since the

exponential function is monotonic, it also follows that
(

exp

{
−µ∗ − σ∗Φ

−1

[
1 −

α

2
Φ

(
µ∗

σ∗

)]}
, exp

{
−µ∗ − σ∗Φ

−1

[
1 −

(
1 −

α

2

)
Φ

(
µ∗

σ∗

)]})

(3.3)

5Note that Aigner et al. (1977) stopped short of explicitly testing σ2

u
, perhaps because they recognized

the violation of regularity conditions.
6In principle, one could use the re-parameterization of Lee (1993) to make inference about γ, but there

is no mention of this in Coelli (1995).
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gives an α × 100-percent probability interval for e−u | ε.

Horrace and Schmidt (1996, pp. 261–262) describe the intervals in (3.2) and (3.3) as

α × 100-percent confidence intervals for u | ε and τ = E (e−u | ε). The intervals can be

estimated by substituting estimates µ̂∗, and σ̂2
∗ for the corresponding true values in (3.3).

Hjalmarsson et al. (1996) and Bera and Sharma (1999) reported estimates of (3.2); Bera and

Sharma (1999) also estimated the interval in (3.3).

Mean efficiency for the model defined by (2.1)–(2.4) is given by

τ = E(τ) = E
(
e−u

)
≡

∫ ∞

0

e−uf(u) du

= 2e
1

2
σ2

u [1 − Φ(σu)] , (3.4)

which is estimated by replacing σu with σ̂u in (3.4) to obtain τ̂ . Using the assumption in

(2.4) that u is distributed half-normal to solve Pr(u ≤ ρα) = α yields the α× 100 percentile

of u, i.e.,

ρα = σuΦ−1

(
1 + α

2

)
. (3.5)

Following the approach of Horrace and Schmidt (1996), one might claim that an estimator

of the interval

[
exp

(
−σuΦ

−1
(
1 −

α

4

))
, exp

(
−σuΦ

−1

(
1

2
+

α

4

))]
. (3.6)

gives an α×100-percent confidence interval for τ̂ ; this interval can be estimated by replacing

σu with an estimate σ̂u in (3.6). As with the intervals in (3.2) or (3.3), however, the interval

in (3.6) is not based the sampling distribution of τ̂ . Instead, (3.6) gives an interval within

which the random variable e−u will fall with probability (1 − α).

It is important to recall that the quantities of interest are E (e−u | ε) in the case of firm-

specific inefficiency and E (e−u) in the case of mean inefficiency. The intervals in (3.3) and

(3.6) describe something different, however: they are based on percentiles of the distributions

of (e−u | ε) and e−u, respectively, instead of the sampling distributions of the estimators τ̂

and τ̂ . This distinction is important. To provide an illustration by analogy, consider the

more familiar example where z ∼ N(µz, σ
2
z); the ML estimator of µz = E(z) is µ̂z = Ê(z) =

n−1
∑n

i=1 zi, with µ̂z ∼ N
(
µz,

σ2
z

n

)
. Using the intervals in (3.3) or (3.6) is analogous to

using the α
2
× 100-

(
1 − α

2

)
× 100-percentiles of N(µz, σ

2
z) instead of N

(
µz,

σ2
z

n

)
to form an

12



α × 100-percent confidence interval for µz. The distribution of Ê(z) is not the same as the

distribution of the z, just as the distributions of estimators of E (eu | ε) and E (eu) are not

the same as the distributions of (eu | ε) and eu.

The classical approach to inference about inefficiency suffers from at least two additional

problems. First, interval estimates obtained from (3.3) and (3.6) are based on the idea of

replacing the true, but unknown parameters with estimates. The resulting interval estimates

do not reflect the uncertainty about the original parameters. Second, the unknown condi-

tioning event ε is replaced by one observed residual ε̂ to construct µ̂∗. Consequently, it is

reasonable to expect the estimator µ̂∗ to be very sensitive to the noise (with variance σ2
v)

contained in v in (2.2).

As seen in the next section, the bootstrap is well-suited to overcome some of these

difficulties.

4 Inference Using the Bootstrap

Given a point (x0, y0) ∈ R
p
+ × R

1
+, the corresponding efficiency estimate based on (2.13) is

simply a function of parameter estimates and (x0, y0). The point (x0, y0) ∈ R
p
+ × R

1
+ could

correspond to an observation in the sample data Sn = {(xi, yi)}
n
i=1, or it could represent some

other point of interest (e.g., the mean or median of observations in Sn). For purposes of the

discussion that follows, it is useful to write the efficiency estimate as τ̂ = τ(β̂, σ̂2, γ̂ | x0, y0),

and to write the quantity in (2.13) that is to be estimated as τ = τ(β, σ2, γ | x0, y0).

In any applied setting, the point (x0, y0) will be known, while β, σ2, and γ are unknown

and consequently must be estimated. Finally, write mean efficiency defined in (3.4)—which

depends only on σ2
u—as τ(σ2

u), and write the corresponding estimator as τ̂ = τ(σ̂2
u).

It is straightforward to implement parametric bootstrap methods in the case of stochastic

frontier models. For the model defined by (2.1)–(2.4), a parametric bootstrap consists of the

following steps:

[1] Using the sample data Sn = {(xi, yi)}
n
i=1, maximize the log-likelihood in (2.6) to obtain

estimates β̂, σ̂2, and γ̂; recover σ̂2
v , σ̂2

u from σ̂2 and γ̂.

[2] For i = 1, . . . , n draw v∗
i ∼ N(0, σ̂2

v) and u∗
i ∼ N+(0, σ̂2

u), and compute y∗
i = g(xi |

β̂)ev∗i −u∗

i .
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[3] Using the pseudo-data S∗
n = {xi, y∗

i }
n
i=1, obtain bootstrap estimates β̂

∗
, σ̂∗2, and γ̂∗

by maximizing (2.6) after replacing log yi with log y∗
i .

[4] Repeat steps [2]–[3] B times to obtain estimates B = {(β̂
∗

b , σ̂∗2
b , γ̂∗

b )}
B
b=1.

The estimates obtained in step [1] can be used to compute estimates τ̂ = τ(β̂, σ̂2, γ̂ |

x0, y0) and τ̂ = τ(σ̂2
u) of τ = τ(β, σ2, γ | x0, y0) and τ (σ̂2

u), respectively. Similarly, the boot-

strap estimates obtained in B can be used to compute bootstrap estimates τ̂ ∗
b = τ(β̂

∗

b , σ̂
∗2
b , γ̂∗

b |

x0, y0) and τ̂
∗

b = τ (σ̂ub
∗2). If one wishes to make inference about σ2

u and σ2
v , bootstrap values

σ∗2
ub, σ∗2

vb can be recovered from the bootstrap estimates in B.

The bootstrap estimates in B (or the additional bootstrap estimates of inefficiency) can be

used to estimate confidence intervals for the parameters of the model or for the efficiencies in

any of several ways. We consider two possibilities. To illustrate, consider an initial estimate

θ̂ of a quantity θ, and a corresponding set of bootstrap estimates {θ̂∗b}
B
b=1. For nominal size

α, the percentile intervals discussed by Efron (1979, 1982) are given by
(
θ̂(α

2
), θ̂( 1−α

2
)

)
where

θ̂(α) denotes the α × 100-percentile of the elements of {θ̂∗b}
B
b=1. Alternatively, bias-corrected

(BC) intervals described by Efron and Tibshirani (1993) are given (again, for nominal size

α) by
(
θ̂(α1), θ̂(α2)

)
where α1 = Φ

(
2ẑ0 + z

α
2

)
, α2 = Φ

(
2ẑ0 + z1−α

2

)
, ẑ0 = Φ−1

(
#{bθ∗

b
<bθ}

B

)
.

The idea of the bootstrap method is to approximate the unknown distribution (θ̂ − θ)

by an empirical approximation of the distribution of (θ̂∗ − θ̂) | Sn. Consequently, in the

case of inefficiency estimates, the bootstrap is able to estimate confidence intervals based

on the sampling distribution of the actual estimators, as opposed to the distributions of

e−u | ε or e−u (recall the discussion following (3.6)). Moreover, the bootstrap explicitly

allows for uncertainty in the parameter estimates, which is ignored in the classical method

when estimates are substituted for true values in (3.3) and (3.6).

5 Monte Carlo Experiments and Results

5.1 Design of Experiments

In our Monte Carlo experiments, we take (2.1)–(2.4) as the “true” model, with g(x | β) =

eβ1xβ2 and x ∼ N+(60, 10) so that x > 0. After taking logs, the model can be written as

log yi = β1 + β2 log xi + vi − ui, (5.1)
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with vi and ui distributed as described in (2.3)–(2.4). Olson et al. (1980) note that only two

parameters among the set {σu, σv, σ2, γ, σ2
ε} (where σ2

ε = VAR(ε) = (π−2)σ2
u

π
+ σ2

v) are

independent. Following the reasoning of Olson et al. (1980), we set σ2
ε = 1 without loss of

generality, and consider various values of the ratio λ2 = σ2
u

σ2
v

of shape parameters. In addition,

we set β1 = log(10) ≈ 2.3026 and β2 = 0.8.

On each Monte Carlo trial, we generated n observations {(xi, yi)}
n
i=1 and use these to

estimate the parameters of the model by maximizing the log-likelihood (2.6). We then use

the parameter estimates to estimate mean efficiency τ defined in (3.4). We also estimate

inefficiency for a set of five “hypothetical” firms, which do not necessarily correspond to any

observations in our samples. For each of these hypothetical firms, the input level is fixed at

60.

Plausible values of the dependent variable in (5.1) vary across experiments, depending

on λ2. For each experiment, we compute the 0.1, 0.2, 0.5, 0.7, and 0.9 quantiles of ε = v−u;

denote these by ε(.1), . . . , ε(.9). We then obtain log-output values for the five hypothetical

firms by computing log y(.1) = β1+β2 log(60)+ε(.1), . . . , log y(.9) = β1+β2 log(60)+ε(.9). The

input/output values for these hypothetical firms are held constant across Monte Carlo trials,

and across bootstrap replications within each Monte Carlo trial, reflecting the fact that in

applied settings, points of interest in the input-output space are always taken as given.

Experiments were run with six different values of λ2 = σ2
u/σ

2
v , with λ2 ∈

{0.1, 0.5, 1, 2, 10, 100}. These values of λ2 correspond to γ = 0.0909, 0.3333, 0.5,

0.6667, 0.9091, and 0.9901, respectively. Each experiment consisted of 1,024 Monte Carlo

trials; on each trial, we used 2,000 bootstrap replications.7 Within a given experiment, con-

ventional intervals based on (3.3) and (3.6) as well as intervals using the bootstrap method

discussed in Section 4 were computed on each trial. Estimated coverages were computed by

recording the proportion among the 1,024 Monte Carlo trials where the computed intervals

include the underlying true values. In all cases, the percentile and BC bootstrap intervals

were found to give similar results; to conserve space, we report only results based on the

percentile intervals described in Section 4.

7The Monte Carlo experiments were performed on a massively parallel machine, where the number of
processors for a particular job are conveniently and efficiently chosen as a power of 2. Choosing 210 = 1, 024
Monte Carlo trials makes efficient use of the processors.
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5.2 Coverage of Intervals for Mean Efficiency

Table 2 shows estimated coverages of mean inefficiency τ , defined in (3.4), by conventional

and bootstrap confidence interval estimates for each value of λ2 at nominal significance levels

of 90, 95, and 99 percent, with sample sizes n ∈ {100, 1000}. With sample size n = 100,

the conventional confidence intervals have poor coverage for all the values of λ2 that were

considered. The bootstrap intervals perform much better, though at .90 and .95 significance

levels, coverages are slightly too large at smaller values of λ2 and slightly too small at larger

values of λ2. At .99 significance, the bootstrap intervals have very good coverage. When the

sample size is increased to n = 1000, coverages by the bootstrap intervals improve in almost

every case. Coverages of the conventional intervals increase, but remain far too small for

λ2 ≤ 0.5; for λ ≥ 2, these intervals always cover the true value τ .

Careful inspection of the interval in (3.6) reveals why the conventional intervals fail so

miserably. To illustrate, consider the case where λ2 = 0.1; the results in Table 1 indicate

roughly 46 percent of samples of size n = 1000—about 471 of 1,024 Monte Carlo trials—will

have residuals with positive skewness, ensuring that γ̂ = 0 and hence σ̂2
u = 0. Replacing σ2

u

in (3.6) with σ̂2
u = 0, the interval estimate collapses to [1, 1]. But, simple algebra reveals

that when λ2 = 0.1 in our experiments, σ2
u ≈ 0.09649 and hence τ ≈ 0.7935. Hence, interval

estimates based on (3.6) will cover τ in at most about 54-percent, or 553 of 1,024 Monte

Carlo trials, regardless of the significance level that is chosen.8

Now consider what happens when the bootstrap procedure described in Section 4 is used.

In the roughly 471 trials where residuals have positive skewness, it remains true that σ̂2
u = 0.

Then in step [2] of the procedure, u∗
i = 0 ∀ i = 1, . . . , n; consequently, the residuals are

composed only of the normally-distributed v∗
i . Although the normal distribution has no

skewness, when finite samples are drawn, roughly half will have small but positive skewness,

while the remaining samples will have small but negative skewness. Therefore, on each

Monte Carlo trial where σ̂2
u = 0, the distribution of the B bootstrap estimates σ∗2

ub obtained

in step [4] will exhibit a probability mass of about 0.5 at zero. This reflects rather closely the

sampling distribution of σ̂2
u, which—due to the results in Table 1—necessarily must contain

8As noted in Section 3.2, (3.6) gives a probability interval for the random variable e−u. With λ2 = 0.1
and hence σ2

u
≈ 0.09649, Pr (e−u = 1) = 0. Thus, even if the estimator of (3.6) is interpreted as a probability

interval for e−u, instead of as a confidence interval for τ , it can include e−u in at most about 54-percent of
all cases when λ2 = 0.1.
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a probability mass of about 0.46 for the case described here.

In cases where sample sizes or λ2 are large enough to ensure that few if any samples

could ever be drawn that would yield residuals with positive skewness, interval estimates

based on (3.6) also result in poor coverage properties; in Table 2, estimated coverages of the

conventional intervals are much too large in such instances. This too is to be expected when

one realizes that the intervals are based not on the sampling distribution of τ̂ , but instead

on percentiles of the distribution of u | ε.

5.3 Coverage of Intervals for Individual Efficiency

Turning to efficiency estimates based on (2.13) for the individual, hypothetical firms de-

scribed above in Section 5.1, Table 3 gives results on coverages by conventional intervals

based on (3.3) and bootstrap confidence interval estimates for sample size n = 100. Table

3 contains three sections, corresponding to nominal significance levels of .90, .95, and .99.

Within each section, the first column indicates the quantiles of ε. The next six columns give

estimated coverages by the conventional intervals for each of six values of λ2, and the last

six columns give similar results for the bootstrap intervals.

As with the results in Table 2 for mean efficiency, Table 3 indicates that coverages

of the conventional intervals for individual efficiencies are poor in almost every instance.

Although the bootstrap intervals give too much coverage with the smaller values of λ2, their

coverages are much closer to nominal significance than is the case with the conventional

interval estimates. The results indicate that coverages depend somewhat dramatically on

the signal-to-noise ratio as reflected by λ2. Coverages also depend, though less severely, on

where the output value lies for a given point of interest, as reflected by the quantiles of ε.

Table 4 gives similar results for n = 1000. Increasing the sample size causes coverages

of the conventional intervals to increase in every case, but the coverage remains poor. In

particular, for larger values of λ2, the coverage is near or equal to 100-percent even at 90-

percent nominal significance. The bootstrap intervals, by contrast, perform well with the

larger sample size when λ2 ≥ 1. For smaller values of λ2, coverage by the bootstrap intervals

is too large for 90-percent and 95-percent nominal significance. But, small values of λ2

represent low signal-to-noise ratios; in other words, when λ2 is small, extracting information

from a given body of data is necessarily more difficult than when λ2 is larger. The bootstrap is
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neither magic nor a panacea, but it still out-performs the conventional approach to inference

regarding efficiencies of individual units.

The reasons for the failure of the conventional intervals for individual efficiencies are anal-

ogous to the reasons for their failure in the case of mean efficiency discussed in Section 5.2.

In particular, for samples where residuals have positive skewness, γ̂ = 0, and consequently

µ̂∗ = σ̂2
∗ = 0, causing estimates of the interval in (3.3) to collapse to [1, 1].

5.4 Coverage of Intervals for Model Parameters

The bootstrap algorithm given in Section 4 can also be used to estimate confidence intervals

for the model parameters. Conventional inference about model parameters meanwhile relies

on the asymptotic normality result from the theory of maximum likelihood, and employs

the inverse negative Hessian of the log-likelihood function in (2.6) as an estimator of the

variance-covariance matrix. Although the model is parameterized in terms of β, σ2, and

γ, straightforward algebra yields estimators σ̂2
v and σ̂2

v as functions of β̂, σ̂2, and γ̂; then

variances of the the estimators σ̂2
v and σ̂2

u can be estimated by ▽
′
vΣ▽v and ▽

′
uΣ▽u where

Σ is the estimated variance covariance matrix for (β, σ2, γ) and ▽v and ▽u are vectors of

derivatives of σ̂2
v and σ̂2

u with respect to β̂, σ̂2, and γ̂. Conventional variance estimates can

be used to estimate confidence intervals in the usual way.

Table 5 gives estimated coverages of both conventional and bootstrap intervals for model

parameters with sample size n = 100 and significance levels .90, .95, and .99. The first row

of the table gives the number of trials—out of 1,024—where confidence intervals for model

parameters could be estimated. Bootstrap intervals could be computed for every trail, but

the negative Hessian of the log-likelihood function is singular whenever γ̂ = 0 or 1. Due

to the problems discussed in Section 3.1, γ̂ = 0 with frequencies similar to those in Table

1. In addition, with a sample size of only 100 observations, large values of λ (10 and 100)

yield small numbers of Monte Carlo trials with estimates γ̂ = 1. Of course, the conventional

confidence interval estimates cannot be computed when the negative Hessian is singular.

Estimated coverages in Table 5 for conventional intervals were computed by dividing the

number of instances where computed intervals covered the corresponding true values not by

the total number of Monte Carlo trials (1,024), but by the number of cases given in the

first row of the table where conventional intervals could be computed. Consequently, the

18



coverage estimates shown for conventional intervals in Table 5 may be overly optimistic.

Although coverage of the intercept and slope parameters (β1 and β2) by the conventional

intervals is close to nominal significance levels in Table 5, coverage of σ2, γ, σ2
v , and σ2

u is

poor for all values of λ2. Coverage by the bootstrap interval estimates is similar to that of

the conventional intervals for β1 and β2, and is more somewhat more accurate than with the

conventional intervals for parameters σ2, γ, σ2
v , and σ2

u.

Table 6 gives similar results for sample size n = 1000. Coverage by conventional intervals

for σ2, γ, σ2
v , and σ2

u remains poor when the sample size is increased to 1,000, but coverage

of these parameters by the bootstrap intervals improves for all but the smallest values of

λ2. For the smallest values of λ2, coverage by bootstrap intervals for σ2
v is very accurate in

Table 6, but too large for σ2, γ, and σ2
u at significance levels .90 and .95. Coverages by the

bootstrap intervals, however, are closer to nominal values than coverages by the conventional

intervals. Once again, when the signal-to-noise ratio is low—reflected by small values of λ2—

it is apparently difficult to extract information about efficiency and noise from the model in

5.1.

5.5 Size and Power of Tests of H0 : γ = 0

As noted above in Section 3.1, it is common in applications to test for the presence of

inefficiency in a global sense. In the context of the Battese and Corra (1977) parameterization

used here, this amounts to testing the null hypothesis H0 : γ = 0. Also as discussed

previously in Section 3.1, Wald tests are commonly used to test H0 : γ = 0. A Wald statistic

for testing H0 : γ = 0 may be written as Ŵ = γ̂2/σ̂2
bγ , where σ̂2

bγ denotes an estimate of the

variance of γ̂. Given the usual Cramér-Rao regularity conditions, Ŵ would posess a limiting

chi-square distribution with one degree of freedom, but as noted before, the Cramér-Rao

regularity conditions do not hold under H0. Consequently, the distribution of Ŵ cannot

be χ2(1), but rather is a mixture of chi-square distributions, namely 1
2
χ2(0) + 1

2
χ2(1) (as

implied by the results in Lee, 1993). Moreover, the variance of γ̂ cannot be esimated by

the corresponding diagonal of the inverse negative-Hessian, since the Hessian is singular

under H0. As noted previously in Section 3.1, Coelli (1995) used the DFP direction matrix

to approximate the variance-covariance matrix in his Monte Carlo experiments to estimate

rejection rates for Wald tests of H0 : γ = 0. The DFP direction matrix is always positive
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definite, even when the Hessian of the log-likelihood is singular as when γ̂ = 0. In other

words, in cases where γ̂ = 0, the DFP direction matrix approximates a matrix that does not

exist.

To capture all the possibilities that might be employed by reseachers using Wald statistics

to test H0 : γ = 0, we consider four versions of the test in our Monte Carlo experiments.

Researchers could obtain the required variance estimates from the DFP direction matrix,

or from the inverse negative-Hessian in cases where γ̂ > 0. In addition, researchers might

determine critical values either from the χ2(1)-distribution, or from the mixture 1
2
χ2(0) +

1
2
χ2(1). We name the four possible tests accordingly:

• Wald Test #1: σ̂2
bγ from DFP direction matrix, critical values from χ2(1);

• Wald Test #2: σ̂2
bγ from inverse negative-Hessian, critical values from χ2(1);

• Wald Test #1: σ̂2
bγ from DFP direction matrix, critical values from 1

2
χ2(0) + 1

2
χ2(1);

• Wald Test #2: σ̂2
bγ from inverse negative-Hessian, critical values from 1

2
χ2(0) + 1

2
χ2(1).

Test #1 is equivalent to the Wald test considered by Coelli (1995). Test #2 and #4 can only

be performed in cases where γ̂ > 0 due to singularity of the Hessian matrix when γ̂ = 0.

Of course, the likelihood ratio (LR) test can also be used to test H0 : γ = 0. This test has

the advantage that it does not require variance-covariance estimates, and consequently its

size and power can be determined in Monte Carlo experiments provided one remembers that

under the null, its distribution is not the usual chi-square but rather a mixture of chi-square

distributions (see Lee, 1993, and the discussion in Section 3.1).

In addition, bootstrap methods can be used to test H0 : γ = 0, although the algorithm

given in Section 4 requires some modification to ensure that the bootstrap samples are

generated under the null. This is accomplished by setting u∗
i = 0 ∀ i = 1, . . . , n in step

[2] of the algorithm, instead of drawing u∗
i from N+(0, σ̂2

u). In addition, only the bootstrap

estimates γ̂∗
b , b = 1, . . . , B need to be retained in step [4] of the algorithm. Then, after B

bootstrap replications in step [4], the estimated p-value for the test is given by p̂ =
#{bγ∗

b
>bγ}

B
.

If p̂ is reasonably small, e.g. smaller than a chosen nominal size α, one may reject H0 : γ = 0.

A series of Monte Carlo experiments were conducted with the same six values of λ2 as in

the previous experiments. In addition, an experiment where λ2 = 0 was also conducted in
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order to estimate the size of the various tests for H0 : γ = 0. The experiments where λ2 > 0

allow estimation of the power of the tests for various departures from the null. Results of

these experiments are given in Table 7 for sample size n = 100, and in Table 8 for sample size

n = 1000. Three significance levels (.90, .95, and .99) are considered; for each significance

level, as well as for each of the seven values of λ2, the Tables give the estimated rejection

rates obtained with the Wald test using either the DFP direction matrix or the Hessian of

the log-likelihood, the LR test, and the bootstrap test described above.

The first row in either Table 7 or 8 gives the number of Monte Carlo trials where the

Hessian matrix was non-singular; only in these cases could the Wald tests (#2 and #3) based

on the Hessian be computed.9 Estimated coverages for these tests were obtained by dividing

the number of trials where the null could be rejected by the number of trials where the test

could be computed. For each of the other tests, division was by the number of Monte Carlo

trials (1,024), since the other tests do not depend on non-singularity of the Hessian.

The results in the column of Table 7 where λ2 = 0 reveal that, at least with sample

size n = 100, the size properties of all versions of the Wald test are quite poor, especially

for the versions (#1 and #3) based on variance estimates from the DFP direction matrix.

Given the poor size properties, there is little reason to consider the tests’ power. Both the

LR and bootstrap tests appear to have good size properties as well as reasonable power to

reject H0 : γ = 0 when the null is in fact false.10 For each of the three nominal sizes that

were considered, the realized size of the bootstrap test is slightly smaller than nominal size

in each case, while the realized size of the LR test is slightly larger than nominal size in

each case. Both tests have realized sizes that are quite close to nominal sizes, however. In

addition, the power of the LR and bootstrap tests are similar for nominal sizes .1 and .05,

but the LR test appears to have greater power when the test size is .01 except in the case

where λ2 = 100.

When the sample size is increased to n = 1000, as in Table 8, the Wald test based on

the DFP direction matrix again performs miserably in terms of size properties. The Wald

test based on the Hessian has reasonable size when the nominal size is set at .05, but this

9The number of trials where the Hessian was non-singular differs slightly in several cases from the numbers
reported in Tables 5 and 6, reflecting variation across Monte Carlo experiments.

10For sample size n = 100, Coelli (1995) found results for the Wald test using the DFP direction matrix
and for the LR test similar to those reported here.
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is apparently a fluke, since the test’s realized size is far too large when nominal size is .1,

and zero when nominal size is .01. By contrast, both the LR and bootstrap tests have very

good size properties in Table 8. Moreover, both tests have very similar power for all values

of λ2 > 0 and each of the three nominal sizes.

Given these results, and the fact that the LR test requires less computation to implement

than the bootstrap test, the LR test seems a better choice for applied work.

6 Conclusions

It has been known for some time that PSF models sometimes yield residuals with the “wrong”

skewness. The implications of this phenomenon for inference, however, have not been care-

fully considered. This paper makes clear that, depending on the signal-to-noise ratio reflected

by λ2, the problem can arise with alarming frequency, even when the model is correctly

specified. Consequently, “wrongly” skewed residuals in an observed sample do not provide

meaningful evidence of specification error. Common practice among practitioners, however,

has been to change the model specification whenever “wrongly” skewed residuals are encoun-

tered.

Classical inference assumes that the model specification is chosen independently of any

estimates that are obtained; specification-searching introduces problems of bias in both pa-

rameter estimates as well as variance-covariance estimates. The bootstrap procedure given

in Section 4 can be used to estimate confidence intervals with good coverage properties, and

can extract useful information about efficiency levels even from samples where residuals have

the “wrong” skewness. In such cases, one of course relies heavily on parametric assumptions,

but this is probably always true when PSF models are estimated.
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Table 1: Proportion of 1,000 Normal-Half Normal Samples with Positive Skewness

λ2 = σ2
u

σ2
v

n .01 .05 .1 .5 1 2 10 20 100
25 0.517 0.510 0.512 0.464 0.390 0.320 0.114 0.048 0.020
50 0.494 0.498 0.493 0.455 0.381 0.219 0.023 0.005 0.003

100 0.498 0.486 0.489 0.405 0.301 0.142 0.000 0.000 0.000
200 0.475 0.509 0.465 0.372 0.228 0.060 0.000 0.000 0.000
500 0.503 0.497 0.489 0.320 0.106 0.007 0.000 0.000 0.000

1,000 0.510 0.488 0.460 0.220 0.032 0.000 0.000 0.000 0.000
10,000 0.513 0.458 0.386 0.004 0.000 0.000 0.000 0.000 0.000

100,000 0.498 0.379 0.215 0.000 0.000 0.000 0.000 0.000 0.000
1,000,000 0.463 0.148 0.003 0.000 0.000 0.000 0.000 0.000 0.000
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Table 2: Estimated Coverages of Confidence Intervals for Mean Inefficiency (τ)

λ2 = σ2
u

σ2
v

Test .1 .5 1 2 10 100

n = 100
(1 − α) = .90

Conventional 0.480 0.541 0.643 0.811 0.996 1.000
Bootstrap 0.949 0.955 0.951 0.942 0.861 0.859

(1 − α) = .95
Conventional 0.483 0.544 0.649 0.817 0.996 1.000
Bootstrap 0.975 0.977 0.974 0.974 0.917 0.934

(1 − α) = .99
Conventional 0.487 0.549 0.654 0.822 0.998 1.000
Bootstrap 0.993 0.994 0.993 0.989 0.982 0.981

n = 1000
(1 − α) = .90

Conventional 0.520 0.741 0.950 1.000 1.000 1.000
Bootstrap 0.951 0.955 0.905 0.898 0.896 0.903

(1 − α) = .95
Conventional 0.522 0.745 0.951 1.000 1.000 1.000
Bootstrap 0.982 0.981 0.969 0.945 0.942 0.942

(1 − α) = .99
Conventional 0.526 0.748 0.951 1.000 1.000 1.000
Bootstrap 0.998 0.996 0.994 0.988 0.987 0.985
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Table 3: Estimated Coverages of Confidence Intervals for True Efficiencies τj = e−uj (n = 100)

Conventional CIs Bootstrap CIs

λ2 = σ2
u

σ2
v

λ2 = σ2
u

σ2
v

quantile .1 .5 1 2 10 100 .1 .5 1 2 10 100
(1 − α) = .90

0.1 0.233 0.399 0.513 0.675 0.878 0.692 0.949 0.951 0.946 0.934 0.850 0.886
0.3 0.383 0.502 0.608 0.767 0.916 0.700 0.949 0.952 0.952 0.938 0.852 0.876
0.5 0.461 0.536 0.639 0.800 0.940 0.704 0.949 0.953 0.954 0.936 0.850 0.869
0.7 0.480 0.542 0.651 0.816 0.964 0.705 0.949 0.963 0.963 0.880 0.832 0.863
0.9 0.483 0.548 0.654 0.823 0.979 0.711 0.980 0.963 0.818 0.711 0.832 0.841

(1 − α) = .95
0.1 0.305 0.444 0.546 0.724 0.911 0.703 0.974 0.975 0.972 0.964 0.904 0.955
0.3 0.434 0.521 0.621 0.784 0.938 0.705 0.974 0.975 0.975 0.966 0.908 0.944
0.5 0.477 0.539 0.647 0.810 0.948 0.707 0.974 0.976 0.977 0.969 0.905 0.940
0.7 0.484 0.547 0.653 0.820 0.972 0.710 0.974 0.979 0.979 0.947 0.910 0.930
0.9 0.485 0.551 0.656 0.826 0.980 0.715 0.995 0.983 0.894 0.790 0.884 0.901

(1 − α) = .99
0.1 0.414 0.503 0.613 0.771 0.938 0.713 0.990 0.992 0.992 0.983 0.972 0.990
0.3 0.473 0.543 0.646 0.805 0.955 0.716 0.990 0.993 0.993 0.986 0.972 0.988
0.5 0.483 0.547 0.653 0.818 0.967 0.718 0.990 0.994 0.994 0.990 0.974 0.987
0.7 0.488 0.551 0.656 0.826 0.979 0.720 0.991 0.994 0.996 0.988 0.982 0.987
0.9 0.488 0.553 0.659 0.831 0.982 0.719 1.000 0.995 0.957 0.916 0.947 0.955
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Table 4: Estimated Coverages of Confidence Intervals for True Efficiencies τj = e−uj (n = 1000)

Conventional CIs Bootstrap CIs

λ2 = σ2
u

σ2
v

λ2 = σ2
u

σ2
v

quantile .1 .5 1 2 10 100 .1 .5 1 2 10 100
(1 − α) = .90

0.1 0.512 0.727 0.933 0.997 1.000 1.000 0.955 0.957 0.900 0.896 0.886 0.921
0.3 0.520 0.736 0.946 0.999 1.000 1.000 0.955 0.954 0.903 0.895 0.882 0.917
0.5 0.521 0.741 0.950 1.000 1.000 1.000 0.955 0.954 0.902 0.890 0.887 0.917
0.7 0.522 0.745 0.951 1.000 1.000 1.000 0.955 0.955 0.902 0.881 0.890 0.913
0.9 0.522 0.748 0.951 1.000 1.000 1.000 0.955 0.960 0.900 0.875 0.893 0.911

(1 − α) = .95
0.1 0.521 0.732 0.942 0.999 1.000 1.000 0.983 0.979 0.979 0.948 0.948 0.957
0.3 0.522 0.742 0.950 1.000 1.000 1.000 0.983 0.979 0.975 0.946 0.948 0.956
0.5 0.522 0.745 0.951 1.000 1.000 1.000 0.983 0.980 0.969 0.944 0.947 0.956
0.7 0.524 0.748 0.951 1.000 1.000 1.000 0.983 0.983 0.957 0.941 0.948 0.957
0.9 0.526 0.748 0.951 1.000 1.000 1.000 0.983 0.984 0.945 0.928 0.945 0.963

(1 − α) = .99
0.1 0.525 0.743 0.950 0.999 1.000 1.000 0.999 0.996 0.994 0.987 0.985 0.983
0.3 0.526 0.746 0.951 1.000 1.000 1.000 0.999 0.996 0.994 0.987 0.986 0.984
0.5 0.526 0.748 0.951 1.000 1.000 1.000 0.999 0.996 0.995 0.988 0.989 0.984
0.7 0.526 0.749 0.951 1.000 1.000 1.000 0.999 0.996 0.996 0.987 0.992 0.983
0.9 0.526 0.750 0.953 1.000 1.000 1.000 0.999 0.997 0.992 0.976 0.984 0.992
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Table 5: Estimated Coverages of Confidence Intervals for Model Parameters (n = 100) (percentile bootstrap)

Conventional CIs Bootstrap CIs

λ2 = σ2
u

σ2
v

λ2 = σ2
u

σ2
v

.1 .5 1 2 10 100 .1 .5 1 2 10 100

# 503 576 688 861 1020 966 1024 1024 1024 1024 1024 1024

(1 − α) = .90
β1 0.891 0.889 0.894 0.890 0.874 0.883 0.893 0.890 0.883 0.884 0.871 0.859
β2 0.889 0.875 0.887 0.897 0.874 0.883 0.896 0.879 0.880 0.882 0.876 0.856
σ2 0.579 0.630 0.655 0.627 0.151 0.019 0.943 0.965 0.956 0.909 0.854 0.855
γ 0.962 1.000 1.000 1.000 1.000 1.000 0.949 0.950 0.950 0.930 0.844 0.708
σ2

v 0.984 0.988 0.997 0.987 0.995 1.000 0.774 0.866 0.906 0.909 0.829 0.704
σ2

u 0.980 0.997 1.000 0.998 0.970 0.984 0.949 0.955 0.958 0.944 0.858 0.865

(1 − α) = .95
β1 0.940 0.939 0.951 0.945 0.930 0.914 0.940 0.940 0.945 0.940 0.932 0.921
β2 0.932 0.934 0.938 0.944 0.927 0.916 0.934 0.940 0.940 0.939 0.932 0.918
σ2 0.620 0.667 0.685 0.665 0.183 0.027 0.969 0.983 0.984 0.961 0.912 0.929
γ 0.998 1.000 1.000 1.000 1.000 1.000 0.973 0.975 0.972 0.960 0.897 0.995
σ2

v 0.988 0.997 0.997 0.997 0.995 1.000 0.841 0.909 0.940 0.939 0.892 0.986
σ2

u 0.994 1.000 1.000 1.000 0.985 0.992 0.974 0.975 0.974 0.972 0.919 0.935

(1 − α) = .99
β1 0.986 0.988 0.990 0.986 0.985 0.943 0.982 0.986 0.985 0.987 0.987 0.982
β2 0.990 0.990 0.988 0.987 0.983 0.945 0.982 0.985 0.985 0.983 0.987 0.983
σ2 0.668 0.721 0.721 0.713 0.249 0.038 0.994 0.996 0.997 0.995 0.976 0.977
γ 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.992 0.991 0.983 0.963 0.997
σ2

v 0.996 0.998 1.000 1.000 0.997 1.000 0.933 0.970 0.984 0.976 0.952 0.997
σ2

u 1.000 1.000 1.000 1.000 0.997 0.998 0.990 0.993 0.993 0.988 0.980 0.979
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Table 6: Estimated Coverages of Confidence Intervals for Model Parameters (n = 1000) (percentile bootstrap)

Conventional CIs Bootstrap CIs

λ2 = σ2
u

σ2
v

λ2 = σ2
u

σ2
v

.1 .5 1 2 10 100 .1 .5 1 2 10 100

# 542 778 981 1024 1024 1024 1024 1024 1024 1024 1024 1024

(1 − α) = .90
β1 0.904 0.910 0.895 0.888 0.887 0.870 0.905 0.901 0.884 0.878 0.890 0.889
β2 0.887 0.888 0.891 0.884 0.889 0.875 0.891 0.880 0.889 0.878 0.887 0.888
σ2 0.738 0.802 0.797 0.528 0.152 0.024 0.939 0.964 0.902 0.890 0.897 0.901
γ 0.801 0.986 1.000 1.000 1.000 1.000 0.955 0.957 0.896 0.902 0.885 0.913
σ2

v 0.958 0.969 0.951 0.994 1.000 1.000 0.906 0.947 0.912 0.892 0.896 0.910
σ2

u 0.873 0.978 0.992 0.980 0.998 0.998 0.955 0.954 0.899 0.901 0.895 0.903

(1 − α) = .95
β1 0.945 0.945 0.945 0.942 0.935 0.935 0.945 0.946 0.941 0.936 0.938 0.942
β2 0.948 0.946 0.942 0.940 0.935 0.939 0.943 0.946 0.943 0.939 0.938 0.944
σ2 0.788 0.854 0.833 0.621 0.174 0.027 0.978 0.985 0.956 0.938 0.943 0.940
γ 0.898 1.000 1.000 1.000 1.000 1.000 0.983 0.979 0.977 0.948 0.953 0.974
σ2

v 0.983 0.982 0.959 0.997 1.000 1.000 0.947 0.978 0.966 0.950 0.945 0.977
σ2

u 0.948 0.992 0.999 0.992 0.999 1.000 0.983 0.981 0.967 0.948 0.944 0.940

(1 − α) = .99
β1 0.985 0.983 0.986 0.989 0.985 0.980 0.988 0.985 0.987 0.987 0.985 0.984
β2 0.987 0.983 0.986 0.987 0.986 0.982 0.986 0.983 0.985 0.986 0.986 0.984
σ2 0.860 0.905 0.894 0.769 0.217 0.038 1.000 0.997 0.996 0.986 0.986 0.986
γ 0.991 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.995 0.988 0.983 0.995
σ2

v 1.000 0.995 0.973 0.997 1.000 1.000 0.990 0.994 0.993 0.986 0.984 0.995
σ2

u 0.996 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.994 0.987 0.987 0.985
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Table 7: Estimated Rejection Rates for H0 : γ = 0 (n = 100)

λ2 = σ2
u

σ2
v

Test 0.0 .1 .5 1 2 10 100

# (490) (503) (577) (689) (861) (1018) (964)

α = .1
Wald Test #1 0.2314 0.2373 0.3008 0.4023 0.6084 0.9717 0.9844
Wald Test #2 0.0918 0.0815 0.0953 0.1132 0.1882 0.7073 0.9098
Wald Test #3 0.2764 0.2832 0.3359 0.4463 0.6494 0.9795 0.9863
Wald Test #4 0.0939 0.0815 0.0953 0.1132 0.1882 0.7132 0.9098
LR 0.1113 0.1094 0.1436 0.2197 0.4043 0.9287 0.9971
Bootstrap 0.0977 0.0879 0.1270 0.1992 0.3701 0.9326 0.9971

α = .05
Wald Test #1 0.2061 0.2139 0.2705 0.3730 0.5723 0.9678 0.9824
Wald Test #2 0.0204 0.0159 0.0295 0.0334 0.0499 0.3468 0.7635
Wald Test #3 0.2314 0.2373 0.3008 0.4023 0.6084 0.9717 0.9844
Wald Test #4 0.0000 0.0000 0.0000 0.0000 0.0012 0.0157 0.1712
LR 0.0635 0.0547 0.0820 0.1416 0.2744 0.8887 0.9971
Bootstrap 0.0488 0.0479 0.0713 0.1104 0.2236 0.8721 0.9971

α = .01
Wald Test #1 0.1709 0.1670 0.2139 0.2979 0.5068 0.9590 0.9824
Wald Test #2 0.0000 0.0000 0.0000 0.0000 0.0012 0.0354 0.2396
Wald Test #3 0.1855 0.1846 0.2295 0.3271 0.5234 0.9619 0.9824
Wald Test #4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LR 0.0166 0.0166 0.0225 0.0459 0.1152 0.7344 0.9912
Bootstrap 0.0088 0.0098 0.0137 0.0215 0.0586 0.5840 0.9922
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Table 8: Estimated Rejection Rates for H0 : γ = 0 (n = 1000)

λ2 = σ2
u

σ2
v

Test 0.0 .1 .5 1 2 10 100

# (517) (542) (778) (981) (1024) (1024) (1024)

α = .1
Wald Test #1 0.1914 0.2100 0.4443 0.7959 0.9922 1.0000 0.9883
Wald Test #2 0.3288 0.3303 0.5450 0.7890 0.9902 1.0000 1.0000
Wald Test #3 0.2354 0.2656 0.5107 0.8281 0.9961 1.0000 0.9883
Wald Test #4 0.3288 0.3303 0.5488 0.7900 0.9912 1.0000 1.0000
LR 0.0977 0.1152 0.3037 0.6533 0.9824 1.0000 1.0000
Bootstrap 0.1006 0.1211 0.3066 0.6553 0.9844 1.0000 1.0000

α = .05
Wald Test #1 0.1553 0.1670 0.4043 0.7471 0.9893 1.0000 0.9883
Wald Test #2 0.1954 0.2325 0.4190 0.6972 0.9854 1.0000 1.0000
Wald Test #3 0.1914 0.2100 0.4443 0.7959 0.9922 1.0000 0.9883
Wald Test #4 0.0426 0.0480 0.1375 0.4200 0.9268 1.0000 1.0000
LR 0.0498 0.0615 0.1885 0.5312 0.9639 1.0000 1.0000
Bootstrap 0.0527 0.0625 0.1895 0.5381 0.9688 1.0000 1.0000

α = .01
Wald Test #1 0.1006 0.1143 0.3047 0.6572 0.9814 1.0000 0.9883
Wald Test #2 0.0677 0.0683 0.1774 0.4842 0.9482 1.0000 1.0000
Wald Test #3 0.1230 0.1348 0.3467 0.6875 0.9844 1.0000 0.9883
Wald Test #4 0.0000 0.0000 0.0000 0.0000 0.0000 0.9102 1.0000
LR 0.0059 0.0059 0.0566 0.2832 0.8555 1.0000 1.0000
Bootstrap 0.0068 0.0059 0.0527 0.2812 0.8594 1.0000 1.0000
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