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Empirical Likelihood Confidence Intervals for
Dependent Duration Data

Anouar El Ghouch∗, Ingrid Van Keilegom∗ & Ian W. McKeague†

Abstract

Three types of confidence intervals are developed for a general class
of functionals of a survival distribution based on censored dependent
data. The confidence intervals are constructed via asymptotic nor-
mality (Wald’s method), the empirical likelihood (EL) method, and
the blockwise EL method in which sample means over blocks of ob-
servations are used in place of the original data. Asymptotic results
are derived to accurately calibrate the various procedures and their
performance is evaluated in a simulation study. The problem of the
choice of the blocksize is also discussed.

Key words: blocking, strong mixing, censoring, Kaplan-Meier integral.

1 Introduction

Dependent censored data arise in economic duration analysis, in which event
times (duration or survival times) are correlated, and the observation of the
event may be prevented by the occurrence of an earlier competing event
(censoring). Observations on duration of unemployment e.g., may be right
censored and are typically correlated. Such dependent censored data occurs,
for example, when study participants belong to clusters (e.g., month of un-
employment, job type, neighborhood, school), with members of the same
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cluster having correlated risk of the event of interest. Chen et al. (2005)
discuss an example involving number of weeks that an individual would like
to collect unemployment benefits. Other examples can be found in medi-
cal follow-up studies, epidemiology and reliability. See Eriksson and Adell
(1994) and Ying and Wei (1994) for some concrete examples. Conventional
analyses of such data assume that study participants are randomly sampled
from the population, which can produce misleadingly narrow interval esti-
mates of survival probabilities. In the present paper we allow dependence
between individuals and construct more suitable confidence intervals for a
general class of functionals of the survival distribution.

Let X1, X2, . . . (survival times) and Y1, Y2, . . . (censoring times) be two
independent, strictly stationary, sequences of random variables on the real
line with marginal distribution functions (df) F and G, respectively. The
dependence along each sequence is assumed to diminish geometrically (see
assumption A2 below). Under the censoring model, instead of observing
Xi, we observe the pair (Zi, δi), i = 1, . . . , n, where Zi = min(Xi, Yi) and
δi = I(Xi ≤ Yi) with I(·) the indicator function. Let H(t) = 1 − (1 −
F (t))(1 − G(t)) be the df of Zi, which we assume to be continuous. Let F̂
and Ĝ denote the Kaplan–Meier (KM) estimators of F and G, respectively,
that is

1− F̂ (t) =
∏

Z(i)≤t

(
n− i

n− i + 1

)δ(i)

and 1− Ĝ(t) =
∏

Z(i)≤t

(
n− i

n− i+ 1

)1−δ(i)

,

where Z(1) ≤ Z(2) ≤ . . . ≤ Z(n) are the order statistics of Zi and δ(1), . . . , δ(n)

are the corresponding δi.
We are interested in constructing a nonparametric confidence interval

(CI) for a parameter of the form

θ = θ(F ) =

∫
ξ(t)dF (t), (1)

where ξ is some given measurable function (see assumption A1 below). Var-
ious parameters of interest can be written in the form of (1). For example,
if ξ(t) = I(t ≤ t0), then θ = F (t0) and if ξ(t) = t, then θ = E(X). We refer
to Stute and Wang (1993) for other examples.

For i.i.d. complete (uncensored) data, the central limit theorem (CLT) for
the sample mean n−1

∑n
i=1 ξ(Xi) can be used to provide a Wald-type CI for θ.

For censored data, such a fundamental result did not exist until Stute (1995)
obtained a CLT for functionals of the form

∫
ξdF̂ . A consistent estimator

of the limiting variance of
∫
ξdF̂ was proposed by Stute (1996), so a Wald-

type CI can be found for θ. Wald-type CIs are centered on the point estimate
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and calibrated easily given asymptotic normality (AN), but they have several
drawbacks: their small sample properties can be unsatisfactory and they may
include values outside the natural range of the parameter. Improved CIs can
be obtained using the empirical likelihood (EL) approach of Owen (1988).
A discussion of the advantages of the EL method over classical methods
(based on a normal approximation and the bootstrap) can be found in Hall
and La Scala (1990) and Owen (2001). It is important to note that EL was
originally introduced by Thomas and Grunkemeier (1975) to construct CIs
for survival probabilities, but the idea cannot be easily adapted to general
functionals of the form (1). Recently, Wang and Jing (2001) used a plug-in
version of EL to find a CI for θ in the case of independent censored data.
In the case of dependent censored data, however, only Wald-type CIs are
available, and only when ξ is an indicator function, see, e.g., Cai (2001).

Throughout we restrict attention to functionals θ(F ) for which
Assumption A1:

ξ(t) = 0 for all t > T, for some T < τ := inf {t : H(t) = 1} .

The truncation imposed on ξ means, for example, that instead of the survival
mean,

∫
t dF (t), we get the truncated mean,

∫ T
−∞ t dF (t). However, as Gijbels

and Veraverbeke (1991) explain it, the truncated functional is very often
not too different from the complete (untruncated) functional if T is taken
sufficiently large. In practice, T can be taken as the last observed survival
time.

Our first goal is to establish the asymptotic normality of θ̂ :=
∫
ξdF̂ via a

representation of the KM integral in terms of the partial sum of a stationary
β-mixing sequence plus an asymptotically negligible remainder term. For the
proof of this result, we adapt to our setting the approach of Stute (1995),
which is only valid for i.i.d. data. Our second goal is the construction of
EL-based CIs for θ. This will be done in two ways: (1) adjusting the EL
statistic to have an asymptotic χ2-distribution, and (2) blockwise empirical
likelihood (BEL), which is a version of EL based on data blocking techniques
proposed by Kitamura (1997) in the context of weakly dependent processes;
here the blockwise log-likelihood ratio is adjusted to have an asymptotic
χ2-distribution. The adjusted (B)EL has the same advantages as standard
(B)EL over Wald-type CIs.

The paper is organized as follows. After introducing a β-mixing (abso-
lutely regular) condition, in Section 2 we develop an asymptotic represen-
tation of the KM integral. The asymptotic normality of θ̂ is obtained as a
corollary. The problem of estimating the limiting variance is also discussed.
In Sections 3 and 4 we use the EL approach, with and without blocking, to
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construct CIs for θ. The performance of the three methods (Wald (AN), EL
and BEL) is compared via simulation in Section 5. In Section 6, we develop
a way of selecting the block size and assess its performance numerically.

2 Asymptotic representation of the KM in-

tegral

In this section we establish the basic result that is used to construct the
various confidence intervals.

We first define a suitable measure of dependence. For any two σ-fields A
and B in a given probability space, let

β(A,B) =
1

2
sup

I∑

i=1

J∑

j=1

|P(Ai ∩ Bj)− P(Ai)P(Bj)| ,

where the supremum is over all finite A-partitions (A1, . . . , AI) and all fi-
nite B-partitions (B1, . . . , BJ). A strictly stationary sequence {Tk, k ∈ Z} is
absolutely regular (or β-mixing) if

β(n) := β
(
F0
−∞,F∞n

)
−−−→
n→∞

0,

where FLJ denotes the σ-field generated by the family {Tk, J ≤ k ≤ L}.
For the properties of this and other strong mixing conditions we refer the
reader to Bradley (1986) and Doukhan (1994). Among the various mixing
conditions available in the literature, β-mixing is relatively weak; it is more
restrictive than α-mixing, but weaker than ρ-mixing. In the sequel we use

Assumption A2: {Xi} and {Yi} are strictly stationary and absolutely reg-
ular, and there exists ν > 3 such that both β-mixing coefficients satisfy

β(n) = O(n−ν). (2)

Along with the assumption that {Xi} and {Yi} are independent, this implies
that the sequence of (Xi, Yi) is absolutely regular with β-mixing coefficient
satisfying (2). Hence (Zi, δi) satisfies the same property. We are now ready
to state our main result, for which we need the following notation:

Ui =
ξ(Zi)δi

1−G(Zi)
≡ ξ(Zi)γ0(Zi)δi,

γ1(t) = (1−H(t))−1

∫ ∞

t+

ξ(x)dF (x), and

γ2(t) =

∫ t−

−∞

γ1(y)

1−G(y)
dG(y).
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Theorem 1 If A1 and A2 hold, and
∫
|ξ(t)|pdF (t) <∞, for some p ≥ 3,

then

θ̂ :=

∫
ξ(t)dF̂ (t) = n−1

n∑

i=1

ηi + oP (n−1/2),

where ηi ≡ ηi(F,G) = Ui + γ1(Zi)(1− δi)− γ2(Zi). (3)

Note that the sequence {ηi} is strictly stationary and absolutely regular,
with β-mixing coefficient satisfying (2). The following corollary is a direct
application of the CLT for strongly mixing sequences; see, for example, Rio
(2000).

Corollary 2 Under the assumptions of Theorem 1,

n1/2
(
θ̂ − θ

)
−→ N

(
0, σ2

η

)

in distribution, with σ2
η = Var(η1) + 2

∑

i>1

Cov(η1, ηi).

Note that σ2
η < ∞, but it can be zero. To avoid the uninteresting case, in

the sequel we assume that σ2
η > 0.

Proof of Theorem 1.
As mentioned in the Introduction, we can adapt the approach of Stute
(1995), so many details will be omitted. Let H0 and H1 be the true un-
known sub-df of the censored and uncensored observation respectively, that
is Hq(t) = P (Zi ≤ t, δi = q) , q = 0, 1. For any (sub-)df Q, we denote by
Qn the corresponding empirical (sub-)df. By Lemma 2.1 in Stute (1995), we
write ∫

ξdF̂ = n−1

n∑

i=1

Ui +Rn1 +Rn2 + Sn, where

(I) Rn1 = n−1

n∑

i=1

UiBin, with

Bin := n

∫ Zi−

−∞
ln

[
1 +

1

n(1−Hn(t))

]
dH0

n(t)−
∫ Zi−

−∞

dH0
n(t)

1−Hn(t)
.

It can be shown that |Bin| ≤
1

2n

H0
n(T )

(1−Hn(T ))2
, for all Zi ≤ T .

So, by the SLLN (ergodicity) of strongly mixing sequences, we obtain
that

Rn1 = O(n−1) a.s.
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(II) Rn2 =
1

2n

n∑

i=1

ξ(Zi)δie
∆in(Bin + Cin)2 with,

Cin :=

∫ Zi−

−∞

dH0
n(t)

1−Hn(t)
−
∫ Zi−

−∞

dH0(t)

1−H(t)
and

∆in is between the two terms

n

∫ Zi−

−∞
ln

[
1 +

1

n(1−Hn(t))

]
dH0

n(t) and

∫ Zi−

−∞

dH0(t)

1−H(t)
.

By the expansion

1

1−Hn
= − 1−Hn

(1−H)2
+

2

1−H +
(Hn −H)2

(1−H)2(1−Hn)
, (4)

and applying the LIL for empirical (sub-)df (Theorem 3.2 of Cai and
Roussas (1992)), we obtain

Cin = O

(√
log logn

n

)
a.s.

On the other hand, it is easily seen that

∆in ≤
H0(T )

1−H(T )
a.s. for all Zi ≤ T.

From these two inequalities and using the SLLN, we obtain

Rn2 = O(n−1 log log n) a.s.

(III) Sn = n−1
n∑

i=1

UiCin.

From (4) we expand Sn into

Sn = −
∫ ∫

I(y < x)ξ(x)γ0(x)

1−H(y)
dH0(y)dH1

n(x)+2Sn1−Sn2 +Rn3, (5)

where

• Rn3 =

∫ ∫
ξ(x)γ0(x)I(y < x)

(Hn(y)−H(y))2

(1−H(y))2(1−Hn(y))
dH0

n(y)dH1
n(x)

= O(n−1 log log n) a.s.
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The last equality is a direct application of the LIL and SLLN.

• Sn1 =

∫ ∫
I(y < x)ξ(x)γ0(x)

1−H(y)
dH0

n(y)dH1
n(x).

This is a V -statistic of degree two of the bivariate β-mixing process
(Zi, δi). Re-expressing Sn1 as an U -statistic, using the Hoeffding de-
composition and then applying Lemma 3 in Arcones (1998) (see also
Arcones (1995)) we get that

Sn1 =

∫ ∫
I(y < x)ξ(x)γ0(x)

1−H(y)

[
dH0(y)dH1

n(x)

+dH0
n(y)dH1(x)− dH0(y)dH1(x)

]
+ oP

(
n−1/2

)
. (6)

• Sn2 =

∫ ∫ ∫
I(y < t, y < x)ξ(x)γ0(x)

(1−H(y))2
dHn(t)dH0

n(y)dH1
n(x).

This is a V -statistic of degree three of the bivariate β-mixing process
(Zi, δi). By the same reasoning as for Sn1, we obtain

Sn2 =

∫ ∫ ∫
I(y < t, y < x)ξ(x)γ0(x)

(1−H(y))2

[
dH(t)dH0

n(y)dH1
n(x)

+dH(t)dH0
n(y)dH1(x) + dH(t)dH0(y)dH1

n(x)

−2dH(t)dH0(y)dH1(x)

]
+ oP

(
n−1/2

)
. (7)

Substituting (6) and (7) into (5), and making some simplifications, completes
the proof. 2

Corollary 2 would allow us to construct Wald-type (AN) confidence limits
for θ if the limiting variance σ2

η were known. Unfortunately, this is not the
case and an estimator of σ2

η is indeed needed. In the case that ξ is the
indicator function, Cai (2001) gave the exact expression of σ2

η and, using
some blocking and plug-in techniques, he proposed a consistent estimator
for this quantity. In our case we need an estimator which is available for a
general ξ. To motivate our approach, note that

σ2
η = lim

n→∞
Var

(
n−1/2

n∑

i=1

ηi

)
.

and ηi is absolutely regular. Given the success of the moving-block jackknife
(BJ) for variance estimation with dependent data (see Künsch (1989) and
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Liu and Singh (1992)), it is natural to apply this procedure in our case. Let
the block size l = l(n) satisfy l → ∞ and l/n → 0. The BJ estimator of σ2

η

is

σ̂2
η,l = lL−1

L∑

i=1

(
η̄li − L−1

L∑

i=1

η̄li

)2

,

where L ≡ L(n) = n− l + 1 and η̄li = l−1
∑i+l−1

j=i ηj.

Here σ̂2
η,l coincides with the moving-block bootstrap variance estimate, see

Theorem 3.4 in Künsch (1989), and converges to σ2(η) under very weak con-
ditions (see Radulović (1996)) that are clearly fulfilled in our case. However,
this estimator cannot be used in practice since it depends on the unknown
survival and censoring df’s. To overcome this problem, we suggest plugging-
in F̂ and Ĝ into (3) to get η̂i ≡ ηi(F̂ , Ĝ) and then substituting η̂i in the
formula for σ̂2

η,l to obtain σ̂2
η̂,l. The numerical performance of this approach

is studied in Section 5. The proposed CI is

θ̂ ± σ̂η̂,l√
n
zα/2 (AN)

where zα is the upper α-quantile of the standard normal distribution.

3 Empirical likelihood

It is easy to check that E(Ui) = θ, hence following Owen’s (1988) idea, we
can define the likelihood ratio function of θ by

R̃(θ) = max

n∏

i=1

np̃i subject to θ =

n∑

i=1

p̃iUi and

n∑

i=1

p̃i = 1.

Since the definition of Ui involves the unknown df G, it is natural to replace
it by Ĝ, cf. Wang and Jing (2001) in the i.i.d. case. The estimated likelihood
ratio is then defined by

R(θ) = max
n∏

i=1

npi subject to θ =
n∑

i=1

piVi and
n∑

i=1

pi = 1,

where

Vi =
ξ(Zi)δi

1− Ĝ(Zi−)
.
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By a standard Lagrange-multiplier argument, we obtain the following expres-
sion for the log-likelihood function:

Ln(θ) = −2 logR(θ) = 2

n∑

i=1

log (1 + λn(Vi − θ)) ,

where λn is the solution of the equation
∑n

i=1
Vi−θ

1+λn(Vi−θ) = 0.
To study the asymptotic behavior of Ln, we need the following lemma.

Lemma 3 Under the assumptions of Theorem 1,

(i) max
1≤i≤n

|Vi| = OP (n1/p),

(ii) n−1
n∑

i=1

(Vi − θ)2 P−→ Var(U1).

Proof.

(i) Note that Vi = Ui
1−G(Zi)

1− Ĝ(Zi)
. Since E|U1|p < ∞, by Markov’s inequality,

max1≤i≤n |Ui| = OP (n1/p). The result follows from

sup
t≤T

1−G(t)

1− Ĝ(t)
= OP (1),

which can be seen as a consequence of the fact that

sup
t≤T

|Ĝ(t)−G(t)|
1− Ĝ(t)

= OP

(√
log log n

n

)
. (8)

This last equality can be shown in the same way as Cai (2001) did in the
proof of his Theorem 2.
(ii) We write

n−1

n∑

i=1

(Vi − θ)2

= n−1
n∑

i=1

(Vi − Ui)2 + n−1
n∑

i=1

(Ui − θ)2 + 2n−1
n∑

i=1

(Ui − θ) (Vi − Ui) .

Observe that

n−1
n∑

i=1

(Vi − Ui)2 = n−1
n∑

i=1

(
Ĝ(Zi)−G(Zi)

1− Ĝ(Zi)
Ui

)2

≤
(

sup
t≤T

|Ĝ(t)−G(t)|
1− Ĝ(t)

)2

n−1

n∑

i=1

U2
i = OP

(
log log n

n

)
.
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So using the SLLN and the Cauchy–Schwarz inequality, the result is obtained.
2

Theorem 4 Under the assumptions of Theorem 1,

σ−2
η Var(U1)Ln(θ)

d−→ χ2
1.

Proof.
We only give the main steps of the proof, and refer the reader to Owen (1988)
for more details. First note that θ̂ = V̄n = n−1

∑n
i=1 Vi, see, e.g., Shorack and

Wellner (1986, (13), (9) and (11) on pg. 295). Hence, Corollary 2 implies
that

n−1/2
n∑

i=1

(Vi − θ) d−→ N
(
0, σ2

η

)
. (9)

From the definition of λn and using Lemma 3 and (9), one can check that

λn = OP

(
n−1/2

)
. (10)

This together with Lemma 3(i) implies that

λn =

∑n
i=1(Vi − θ)∑n
i=1(Vi − θ)2

+ oP
(
n−1/2

)
. (11)

Using a Taylor expansion of Ln, together with (10) and Lemma 3, yields

Ln(θ) = 2λn

n∑

i=1

(Vi − θ)− λ2
n

n∑

i=1

(Vi − θ)2 + oP (1). (12)

Substituting (11) into (12), using again (9) and (10) together with Lemma
3, we get

Ln(θ) =
(
∑n

i=1(Vi − θ))2

∑n
i=1(Vi − θ)2

+ oP (1)

which leads to the result. 2

Since θ̂ is a consistent estimator of θ, from Lemma 3(ii), we can con-

sistently estimate Var(U1) by n−1
∑n

i=1

(
Vi − V̄n

)2
. As a consequence, we

propose the following EL confidence interval for θ:
{
µ :

n−1
∑n

i=1(Vi − V̄n)2

σ̂2
η̂,l

Ln(µ) ≤ χ2
1(α)

}
(EL)

where χ2
1(α) is the upper α-quantile of the χ2

1 distribution.
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4 Blockwise empirical likelihood

In this section we construct an EL profile ratio for θ based on observational
blocks, as proposed by Kitamura (1997).

Let the block size b ≡ bn satisfy b → ∞ and bn1/p−1/2 → 0. For
i = 1, . . . , N := n − b + 1 we denote by V̄i,b the sample mean of the block
(Vi, . . . , Vi+b−1). Instead of assigning mass to each single observation, here
we assign a mass {pi}1≤i≤N to each block sample mean

{
V̄i,b
}

1≤i≤N . The
estimated blockwise EL ratio at θ is

Rb(θ) = max

N∏

i=1

Npi subject to θ =

N∑

i=1

piV̄i,b and

N∑

i=1

pi = 1,

which yields the log-likelihood function

Ln,b(θ) = 2

N∑

i=1

log
(
1 + λn,b(V̄i,b − θ)

)
,

where λn,b is the solution of the equation
∑N

i=1
V̄i,b−θ

1+λn,b(V̄i,b−θ) = 0. When no

confusion is possible, we will write V̄i and λ, instead of V̄i,b and λn,b.

Theorem 5 Under the assumptions of Theorem 1,

rnσ
2
Uσ
−2
η Ln,b(θ)

d−→ χ2
1,

where rn = N−1n/b and σ2
U = Var(U1) + 2

∑
i>1Cov(U1, Ui).

To prove this theorem we need the following lemma.

Lemma 6 Under the assumptions of Theorem 1,

(i) n1/2N−1

N∑

i=1

(V̄i − θ) d−→ N(0, σ2
η),

(ii) max
1≤i≤N

∣∣V̄i
∣∣ = OP

(
n1/p

)
,

(iii) bN−1
N∑

i=1

(
V̄i − θ

)2 p−→ σ2
U .

11



Proof.
(i) Note that

∑N
i=1

(
V̄i − θ

)
=
∑n

i=1(Vi − θ)− K̂n, with

K̂n = b−1

b∑

j=1

(b− j)(Vj − θ) + b−1

b∑

j=1

(b− j)(Vn−j+1 − θ) = K̂1
n + K̂2

n (say) .

K̂1
n may be written as

K̂1
n = b−1

b∑

j=1

(b− j)(Uj − θ) + b−1
b∑

j=1

(b− j)(Vj − Uj) = K1
n + I1

n (say) .

Clearly E(K1
n) = 0, and by stationarity

b2Var(K1
n) =

b∑

j=1

(b− j)2Var(U1) + 2
b−1∑

i=1

b−i∑

j=1

(b− i)(b− i− j)Cov(U1, Uj+1)

≤ b3Var(U1) + 2b3
b∑

i=1

|Cov (U1, Ui+1)| .

By Davydov’s inequality (see for example Theorem 3 in Doukhan (1994)),

b∑

i=1

|Cov (U1, Ui+1)| = O

(∑

n≥1

β(n)1−2/p

)
= O(1).

So, Var
(
n−1/2K1

n

)
= O(n−1b), and hence K1

n = oP (n1/2). On the other hand,

|I1
n| ≤ sup

t≤T

|Ĝ(t)−G(t)|
1− Ĝ(t)

b∑

j=1

|Uj| = oP (n1/2).

We deduce that K̂1
n = oP (n1/2). Following the same procedure, it can be

shown that K̂2
n = oP (n1/2), and hence this is also the case for K̂n. To con-

clude the proof, it suffices to apply (9) and the fact that n/N → 1.

(ii) From the definition of V̄i it is easy to check that max1≤i≤N
∣∣V̄i
∣∣ ≤ max1≤i≤n |Vi|.

So the result follows directly by Lemma 3(i).

(iii) We write

bN−1
N∑

i=1

(
V̄i − θ

)2
= bN−1

N∑

i=1

(
V̄i − Ūi

)2
+ bN−1

N∑

i=1

(
Ūi − θ

)2
+

2bN−1

N∑

i=1

(
Ūi − θ

) (
V̄i − Ūi

)
,
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with Ūi = b−1
∑i+b−1

j=i Uj. Observe that

bN−1

N∑

i=1

(
V̄i − Ūi

)2 ≤
(

sup
t≤T

|Ĝ(t)−G(t)|
1− Ĝ(t)

)2

bN−1

N∑

i=1

(
b−1

i+b−1∑

j=i

|Uj|
)2

.

(13)

Clearly, for a fixed n, {(b−1
∑i+b−1

j=i |Uj|)2, i ≥ 1} is stationary, so using
Minkowski’s inequality it follows that

E


N−1

N∑

i=1

(
b−1

i+b−1∑

j=i

|Uj|
)2

 ≤ E(U2

1 ) <∞.

This together with (8) implies that the left hand side of (13) converges
to 0. Now, by Lemma 1 in Radulović (1996) one can easily check that

bN−1
∑N

i=1

(
Ūi − θ

)2 P−→ σ2
U . Finally use the Cauchy–Schwarz inequality to

complete the proof. 2

We omit the proof of Theorem 5 as it follows the same steps as the proof
of Theorem 4.

The proposed BEL confidence interval is given by




µ : rn

bN−1
∑N

i=1

(
V i,b −N−1

∑N
i=1 V i,b

)2

σ̂2
η̂,l

Ln,b(µ) ≤ χ2
1(α)




. (BEL)

remark: If we choose a fixed b = 1, we obtain exactly the EL confidence
interval. So, one can consider the classical EL (without blocking) as a par-
ticular case of the BEL.

5 Numerical study

In this section we present a simulation study in order to compare, for the case
of finite samples, the performance of the three proposed confidence intervals
(AN, EL, BEL). Two functionals of the survival function are investigated:

• ξ(x) = I(x ≤ t), i.e. θ = F (t) the df at a given t.

• ξ(x) = xI(x ≤ τ ), i.e. θ =
∫ τ
−∞ xdF (x) the truncated mean at a

given τ .
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When ξ is the indicator function, we will also compare the performance of the
BJ estimator for ση with Cai’s estimator (see formula (2.13) in Cai (2001)).
Simulations have been carried out for several Weibull and Uniform distribu-
tions for the survival and censoring distribution. Since the results were quite
similar, here we will only show the case when the survival distribution is the
standard exponential, 1−F (t) = exp(−t), t > 0 and censoring is uniform on
[0, c], G(t) = t/c, 0 < t < c. The value of c is determined to achieve some
prespecified censoring rate (25%, 50% and 75%). To generate our data, we
consider an ARMA(p, q) time series of the form

Zt =

p∑

i=1

αiZt−i +

q∑

i=1

γiεt−i + εt,

where the εt are i.i.d. N (0, 1). Two different models are chosen:

• Model 1: MA(3), (γ1, γ2, γ3) = (4.5,−3.1, 2.7).

• Model 2: ARMA(3, 3), (α1, α2, α3) = (1.7,−1.3, 0.45), (γ1, γ2, γ3) =
(4.5,−3.1, 2.7).

Clearly the dependence under Model 2 is stronger than the dependence under
Model 1. This can be seen from the theoretical auto-correlation-function
of each model (see Figure 1 below). The resulting process Zt is strictly
stationary and β-mixing, with β(n) → 0 at an exponential rate (see Pham
and Tran (1985) and Bougerol and Picard (1992)). The marginal distribution
of Zt is normal with mean 0 and variance σ2 ≈ 38.15 for Model 1 and
σ2 ≈ 104.67 for Model 2. From each model, we generate independently two
samples, Z1

t and Z2
t , of size n = 300 and then we take Xt = F−1 (Φ(Z1

t /σ))
and Yt = G−1 (Φ(Z2

t /σ)), where Φ is the df of a N (0, 1). Of course the
process Xt (Yt) is strictly stationary β-mixing with df F (G). To calculate
the three CIs we need a block size l for the estimated asymptotic variance.
In this study the value of l ranges from l = 1 to l = 35. Moreover, for
the blockwise EL we need also the block size b. In this case, for each fixed
value of l, b ranges from b = 2 to b = 25. For each scenario, the empirical
coverage probability and the mean length are calculated over 1500 simulated
confidence intervals. The results are summarized in Tables 1 and 2 for the
distribution function and Table 3 for the truncated mean. Each entry in the
table represents the best result (minimum coverage error, as the first criteria,
and minimum length) obtained over all possible (fixed) values of l and b.

For θ = F (t), from Table 1 and 2 we observe that the coverage probabili-
ties and lengths of all the CIs found using the Cai and BJ variance estimators
are quite close, but the BJ procedure gives systematically slightly better cov-
erage probability. The coverage error and the length of all CIs increases as
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the degree of dependence in the data increases. For Model 2, except for the
case where t = 0.5 and 70% censoring, the CIs undercover. In general we get
better results at middle time points. At early time points, the CIs perform
quite poor especially with the AN approach. In this case there is a consid-
erable improvement with BEL method. Note also that the performance of
the CIs depends also on the censoring rate. Generally, the length of the CI
increases as the censoring rate increases, but the coverage accuracy also in-
creases. Finally, the coverage probability gets close to the nominal coverage
as we pass from AN to EL and from EL to BEL.

For the truncated mean, first note that we have taken a different value
of τ for the different censoring rates (τ = 0.8 and τ = 0.65 for 25% and 50%
censoring, respectively). This is natural since we cannot hope to do very
well with high censoring. From Table 3 we observe that the results are quite
similar to those for F (t). In particular, BEL still does the best and under
Model 2 the performance of none of the CIs is very satisfactory.

Another objective of our simulations was to study the effect of the block-
size. Table 4 provides an illustration of this. The performance of the CIs
depends rather critically on the choice of the blocksize. Typically, choosing
an inappropriate block length leads to under coverage, although we did find
some cases (not shown here) of over coverage. In summary, two things have
become clear. First, BEL appears to be more sensitive to the choice of l (the
blocksize of the asymptotic variance estimator) than to the choice of b (the
blocksize of the blockwise EL). With a ‘good’ value of l, one may obtain a
reasonable result even if the choice of b is ‘not so good.’ Second, around the
optimal value of l and/or b there is a tolerable range of blocksizes within
which the results are close to optimal.
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AN EL BEL
Var Cai BJ Cai BJ Cai BJ

t %cens

0.2 25 coverage 0.926 0.927 0.932 0.933 0.938 0.940
length 0.085 0.085 0.085 0.085 0.087 0.087

0.5 25 coverage 0.933 0.935 0.934 0.935 0.950 0.950
length 0.102 0.103 0.102 0.102 0.107 0.108

50 coverage 0.944 0.947 0.946 0.948 0.950 0.950
length 0.117 0.117 0.117 0.118 0.121 0.118

70 coverage 0.938 0.946 0.942 0.950 0.943 0.950
length 0.181 0.188 0.184 0.192 0.186 0.192

0.7 25 coverage 0.932 0.935 0.935 0.937 0.937 0.941
length 0.103 0.104 0.103 0.104 0.104 0.105

Table 1: Model 1. 95% confidence interval for F (x) at x = F−1(t) (best
fixed block size results).

AN EL BEL
Var Cai BJ Cai BJ Cai BJ

t %cens
0.2 25 coverage 0.866 0.867 0.882 0.883 0.892 0.893

length 0.179 0.180 0.179 0.179 0.180 0.180

0.5 25 coverage 0.889 0.892 0.898 0.900 0.900 0.910
length 0.243 0.243 0.239 0.240 0.242 0.241

50 coverage 0.914 0.916 0.915 0.917 0.918 0.920
length 0.253 0.255 0.251 0.253 0.258 0.255

70 coverage 0.946 0.950 0.943 0.950 0.946 0.951
length 0.300 0.311 0.315 0.320 0.300 0.300

0.7 25 coverage 0.887 0.891 0.887 0.891 0.891 0.900
length 0.222 0.225 0.222 0.222 0.221 0.224

Table 2: Model 2. 95% confidence interval for F (x) at x = F−1(t) (best
fixed block size results).
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%cens 25, τ = 0.8 50, τ = 0.65
AN EL BEL AN EL BEL

Model 1. coverage 0.944 0.950 0.952 0.930 0.943 0.950
length 0.123 0.123 0.123 0.104 0.104 0.106

Model 2. coverage 0.913 0.922 0.930 0.922 0.924 0.932
length 0.170 0.168 0.170 0.135 0.132 0.136

Table 3: 95% confidence intervals for
∫ τ

0
tdF (t) (best fixed block size results).
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Figure 1: Theoretical auto-correlation-function of Model 1 and Model 2.
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Model 1 AN EL BEL
b=1 b=5 b=10 b=15 b=20 b=25

25% of censoring
l=5 0.934 0.935 0.941 0.943 0.942 0.944 0.947
l=10 0.933 0.934 0.940 0.939 0.939 0.943 0.950
l=15 0.926 0.925 0.930 0.932 0.935 0.936 0.940
l=20 0.920 0.919 0.923 0.925 0.930 0.927 0.930
l=25 0.917 0.917 0.913 0.920 0.924 0.925 0.923
l=30 0.911 0.911 0.910 0.913 0.918 0.915 0.915
l=35 0.904 0.905 0.908 0.910 0.912 0.911 0.911
50% of censoring
l=5 0.947 0.948 0.948 0.948 0.950 0.948 0.948
l=10 0.942 0.943 0.945 0.946 0.950 0.948 0.948
l=15 0.937 0.937 0.940 0.944 0.946 0.948 0.946
l=20 0.932 0.930 0.935 0.935 0.941 0.942 0.941
l=25 0.923 0.924 0.924 0.928 0.931 0.934 0.932
l=30 0.918 0.917 0.918 0.925 0.929 0.929 0.928
l=35 0.915 0.915 0.917 0.921 0.925 0.925 0.922

Model 2 AN EL BEL
b=1 b=5 b=10 b=15 b=20 b=25

25% of censoring
l=5 0.814 0.820 0.820 0.820 0.824 0.822 0.821
l=10 0.867 0.872 0.880 0.880 0.880 0.879 0.876
l=15 0.889 0.896 0.897 0.896 0.890 0.893 0.893
l=20 0.892 0.899 0.899 0.898 0.896 0.895 0.895
l=25 0.890 0.898 0.900 0.897 0.895 0.893 0.891
l=30 0.886 0.893 0.895 0.896 0.893 0.891 0.890
l=35 0.884 0.889 0.894 0.894 0.891 0.887 0.885
50% of censoring
l=5 0.863 0.864 0.868 0.868 0.865 0.863 0.863
l=10 0.900 0.909 0.900 0.906 0.903 0.905 0.904
l=15 0.912 0.914 0.920 0.913 0.916 0.916 0.913
l=20 0.916 0.917 0.914 0.915 0.918 0.916 0.916
l=25 0.910 0.914 0.914 0.915 0.913 0.917 0.917
l=30 0.914 0.914 0.914 0.915 0.913 0.914 0.915
l=35 0.915 0.912 0.911 0.915 0.914 0.912 0.913

Table 4: 95% confidence intervals for F (x) at x = F−1(0.5) for different
value of l and b using the BJ variance estimator.
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6 Blocksize choice

In practice we need to choose a block length to compute any of our confidence
intervals. However, it is known that choosing a blocksize is not an easy task
in inference with dependent data. For more discussion of this issue we refer
to Politis and White (2004), Zvingelis (2001) and the references given in
those papers. To the best of our knowledge, there are no guidelines in the
literature about how to select a blocksize in the case of censored data. Here
we propose to select l and b by a data-driven procedure, using an idea from
subsampling theory due to Politis et al. (1997). We give preference to that
procedure for its simplicity. It does in fact not require any bootstrapping or
subsampling. The main idea behind this method is to select a blocksize in a
suitable range. For any value of (l, b) in this range, one may hope to get a CI
Il,b almost close to the best possible obtained by using the optimal blocksize.
In other words we will look for a (l∗, b∗) around which small changes will be
observed in the confidence intervals. This idea translates into the following
algorithm.
algorithm:

1. Fix intervals [lsmall, lbig] and [bsmall, bbig] in which l∗ and b∗ will be de-
termined.

2. For each (l, b) from a grid {lsmall, . . . , lbig} ∗ {bsmall, . . . , bbig}, compute
the confidence interval and denote it by Il,b = [I lowl,b , I

up
l,b ] .

3. For each fixed value (l, b) calculate V Il,b, which is the sum of the stan-
dard deviation of

{
I lowl−k,b, . . . , I

low
l+k,b, I

low
l,b−k, . . . , I

low
l,b+k

}
and the standard

deviation of
{
Iupl−k,b, . . . , I

up
l+k,b, I

up
l,b−k, . . . , I

up
l,b+k

}
.

4. Choose (l∗, b∗) corresponding to the smallest value of (l + b)sV Il,b, for
some fixed s.

This is a generalization of the original algorithm of Politis et al. (1997) in
the sense that the data-driven procedure is used to choose l and b simulta-
neously. Note that we also multiply the volatility index V Il,b by (l+ b)s with
typically s = 1 or s = 2 in order to avoid selecting a large value of l and b.
However, even with s = 0 the algorithm still gives reasonable results. For the
simulation, we take lsmall = 1, lbig = 35, bsmall = 1, bbig = 25, k = 2 for AN
and k = 1 for BEL. For each scenario, this procedure was replicated 1500
times and the results are shown in Table 5 for the df and the truncated mean
(only results based on BJ variance estimator are shown). By comparing these
results with those of Table 1, 2 and 3 we can observe that the difference in
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the coverage probability is about 5% on average for the df and also for the
truncated mean.

Model 1 Model 2
AN BEL AN BEL

Distr. funct. t %cens
0.2 25 coverage 0.924 0.928 0.868 0.893

length 0.086 0.086 0.183 0.183

0.5 25 coverage 0.927 0.938 0.894 0.902
length 0.103 0.104 0.246 0.244

50 coverage 0.937 0.946 0.915 0.918
length 0.118 0.119 0.257 0.256

70 coverage 0.934 0.943 0.955 0.952
length 0.181 0.192 0.315 0.319

0.7 25 coverage 0.930 0.933 0.891 0.900
length 0.105 0.105 0.228 0.227

Trunc. mean τ %cens
0.8 25 coverage 0.946 0.950 0.911 0.920

length 0.122 0.123 0.168 0.170

0.65 50 coverage 0.936 0.940 0.924 0.930
length 0.104 0.104 0.136 0.138

Table 5: 95% confidence intervals using the data-driven procedure and the
BJ variance estimator.
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