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Abstract

In this article we introduce a goodness-of-fit test for parametric regression models

when the response variable is right censored. The test is based on the comparison

of a parametric estimator and a nonparametric estimator of the distribution of the

residuals. Kolmogorov-Smirnov and Cramér-von Mises type statistics are proposed.

A bootstrap mechanism is used to approximate the critical values of the test. Some

simulations are included and a real data set is analyzed.
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1 Introduction and statistical model

The aim of regression models consists of describing the relationship between a response

and a covariate. In many practical situations parametric regression models are appeal-

ing. They describe the relationship between the response and the covariate in a simple

way and usually allow for interpretability of the parameters (for instance in linear re-

gression). Nevertheless, if the parametric model fails then the conclusions will be erro-

neous. Any parametric analysis should be accompanied by a test to check its validity and

avoid misspecification and wrong conclusions. This motivates the development of specific

goodness-of-fit tests for parametric models in regression.

When the response variable of the regression model is a survival time it is useful

to allow for censoring in the statistical model. Fan and Gijbels (1994) motivate the

development of analytic tools for censored data: when the response variable is censored

the usual tools of regression (scatter plots, residuals plots, etc.) are not directly applicable

to check, at least visually, the shape of the regression curves.

In the context of censored data the statistical model can be described as follows. Let

(X,Y ) be a random vector, where Y represents a certain response variable associated

to the covariate X. Assume that the response variable Y is subject to random right

censoring. This means that there exists a censoring variable C, independent of Y given

X, such that we observe Z = min{Y,C} and the indicator of censoring ∆ = I(Y ≤ C).

Consider the following non-parametric regression model:

Y = m(X) + σ(X)ε. (1)

The error variable ε is independent of X, m is an unknown conditional location function

m(x) =

∫ 1

0

F−1(s|x)J(s)ds (2)

and σ is an unknown conditional scale function representing possible heteroscedasticity

σ2(x) =

∫ 1

0

F−1(s|x)2J(s)ds−m2(x), (3)

where F (·|x) is the conditional distribution of Y given X = x, F−1(s|x) = inf{y;F (y|x) ≥

s} is the corresponding quantile function and J(s) is a score function satisfying
∫ 1

0
J(s)ds =

1 (in general, for any distribution function F we denote F−1(s) = inf{y;F (y) ≥ s} for the

corresponding quantile function and τF = inf{y;F (y) = 1}). Let Fε be the distribution of

the error ε. By construction
∫ 1

0
F−1

ε (s)J(s)ds = 0 and
∫ 1

0
F−1

ε (s)2J(s)ds = 1. The sample
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consists of n independent replications (Xi, Zi,∆i), i = 1, . . . , n, from the distribution of

(X,Z,∆).

The choice of the score function J leads to different location and scale functions. In

particular if J(s) = I(0 ≤ s ≤ 1) then m and σ2 are the conditional mean and conditional

variance respectively. However, it may happen that this choice of J is not appropriate

because of the inconsistency of the estimator of the conditional distribution F (·|x) in the

right tail due to the censoring. An interesting choice in the context of censored data is

J(s) = (q−p)−1I(p ≤ s ≤ q), for some 0 ≤ p ≤ q ≤ 1, which leads to trimmed means and

trimmed variances. The conditional median or other conditional quantiles can be seen as

limits of trimmed means.

Given a particular parametric class of regression functions M = {mθ; θ ∈ Θ}, where

Θ ⊂ R
p, for some p ≥ 1, we are interested in testing the null hypothesis

H0 : m ∈ M, (4)

versus the general alternative

H1 : m /∈ M.

Note that in the case of homoscedasticity, if the parametric model is of the form mθ(·) =

θ1 + mθ2
(·) (containing a constant as an additive term) and H0 holds for a particular

definition of the location function, that is, for a particular choice of the score function J ,

then it will necessarily hold for all possible location functions.

The test is based on the comparison of two estimators of the distribution of the errors.

Assume that θ̂ is an estimator of the parameter under the null hypothesis and m̂ is a

nonparametric estimator of the regression function. We compare the distribution of the

residuals estimated in a parametric way (Zi −mθ̂(Xi))/σ̂(Xi) with the distribution of the

residuals estimated in a completely nonparametric way (Zi − m̂(Xi))/σ̂(Xi). These resid-

uals are censored because they are calculated with respect to the observed times Zi and

not with respect to the actual (and not observable) times Yi. We will compare the cor-

responding Kaplan-Meier estimators of their distributions via Kolmogorov-Smirnov and

Cramér-von Mises type statistics. This idea was developed by Van Keilegom, González-

Manteiga and Sánchez-Sellero (2005) for non censored data.

Several goodness-of-fit tests for complete data have been proposed in the literature

along the last decade. See e.g. Van Keilegom, González-Manteiga and Sánchez-Sellero

(2005) for an overview of recent papers on this subject. For censored data Stute, González-

Manteiga and Sánchez-Sellero (2000) studied a test based on the marked empirical process
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of the integrated regression function. Their setup is somewhat different and more restric-

tive than ours since they assume independence between the response Y and the censoring

variable C and focus on the conditional mean.

The rest of this paper is organized as follows. In Section 2 we describe in detail the

testing procedure. Section 3 contains some asymptotic results. In Section 4 we propose

a bootstrap mechanism to approximate the critical values of the test and in Section 5

we study its practical behavior by means of simulations. A real data set is analyzed in

Section 6. Finally, the Appendix contains the proofs of the asymptotic results.

2 Testing procedure

The testing procedure is based on the comparison of two estimators of the distribution of

the errors Fε. This involves nonparametric estimation of the location and scale functions

and estimation of the parameter θ under the null hypothesis.

The nonparametric estimators will be constructed using the estimator of the condi-

tional distribution function F (·|x) of Y given the value x of the covariate X when the

response is censored introduced by Beran (1981) and studied, among others, by González-

Manteiga and Cadarso-Suárez (1994) and Van Keilegom and Veraverbeke (1997):

F̂ (y|x) = 1 −
∏

Zi≤y,∆i=1

(

1 −
Wi(x, hn)

∑n
j=1 I(Zj ≥ Zi)Wj(x, hn)

)

, (5)

where

Wi(x, hn) =
K((x−Xi)/hn)

∑n
j=1K((x−Xj)/hn)

are Nadaraya-Watson weights, K is a known kernel and hn is an appropriate bandwidth

sequence.

The nonparametric estimator of the location function is

m̂(x) =

∫ 1

0

F̂−1(s|x)J(s)ds (6)

and the estimator of the scale function is

σ̂2(x) =

∫ 1

0

F̂−1(s|x)2J(s)ds− m̂2(x). (7)

Compute the estimators of the censored residuals

Êi =
Zi − m̂(Xi)

σ̂(Xi)
(8)
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and estimate the distribution of the residuals from the censored sample (Êi,∆i), i =

1, . . . , n, through the product-limit estimator introduced by Kaplan and Meier (1958)

F̂ε(y) = 1 −
∏

Êi≤y,∆i=1

(

1 −
1

∑n
j=1 I(Êj ≥ Êi)

)

. (9)

This estimator of the error distribution has been proposed and studied by Van Keilegom

and Akritas (1999).

If the null hypothesis is true there exists a value of the parameter θ0 such thatm = mθ0
.

For the moment we assume that we have an estimator θ̂ of the true parameter θ0 under H0.

We will discuss about this issue later. The residuals based on the parametric estimation

of the location function mθ̂ are

Êi0 =
Zi −mθ̂(Xi)

σ̂(Xi)
. (10)

Note that we are keeping the nonparametric estimator of the variance function. Estimate

the corresponding distribution from the censored sample (Êi0,∆i), i = 1, . . . , n,

F̂ε0(y) = 1 −
∏

Êi0≤y,∆i=1

(

1 −
1

∑n
j=1 I(Êj0 ≥ Êi0)

)

. (11)

Under the null hypothesis F̂ε and F̂ε0 are both estimators of Fε. The fact that there ex-

ist differences between these two estimators of the distribution of the errors gives evidence

for the alternative hypothesis. This idea is formalized in the following Theorem, in the

sense that the equality of the theoretical versions of the distributions considered in (9) and

(11), i.e., Fε(y) = P ((Y −m(X))/σ(X) ≤ y) and Fε0(y) = P ((Y −mθ0
(X))/σ(X) ≤ y),

for θ0 ∈ Θ, characterizes the null hypothesis. The proof can be found in the Appendix.

Theorem 1 Let m be a continuous function. Then H0 holds if and only if there exists

θ0 ∈ Θ such that Fε(y) = Fε0(y), −∞ < y <∞.

Let He(y) = P ((Z −m(X))/σ(X) ≤ y) and let T be any point smaller than τHe
. The

goodness-of-fit test is carried out through the process

Ŵ (y) = n1/2(F̂ε0(y) − F̂ε(y)),

−∞ < y ≤ T . More precisely, we propose a Kolmogorov-Smirnov type statistic

TKS = sup
−∞<y≤T

|Ŵ (y)| (12)
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and a Cramér-von Mises type statistic

TCM =

∫ T

−∞

Ŵ 2(y)dF̂ε0(y). (13)

The null hypothesis (4) is rejected for large values of the test statistics.

Estimation of the parameter θ0 under the null hypothesis. In the theoretical

results we will show in the next section, we assume that the estimator of the parameter

under the null hypothesis admits an asymptotic representation of the form

θ̂ − θ0 = n−1

n
∑

i=1

~ω(Xi, Zi,∆i) + (oP (n−1/2), . . . , oP (n−1/2))t, (14)

where ~ω(x, z, δ) = (ω1(x, z, δ), . . . , ωp(x, z, δ))
t verifies, for k = 1, . . . , p, E(ωk(X,Z,∆)) =

0 and V ar(ωk(X,Z,∆)) < ∞. The theory we will develop in Section 3 will be valid for

any estimator verifying the representation (14).

Akritas (1996) introduced a parameter estimate for polynomial models which verifies

(14). Basically the estimator of the parameter is the least squares estimator based on a

preliminary non parametric estimation. Given a polynomial model m(x) = θ1 + θ2x +

· · · + θpx
p−1, the estimate of the parameter θ0 = (θ1, . . . , θp)

t is θ̂ = (XtX)−1Xtm̂, where

m̂t = (m̂(X1), . . . , m̂(Xn)) and X is the design matrix of dimension n × p whose (i, k)

element is Xk−1
i , i = 1, . . . , n, k = 1, . . . , p. We will use this estimator in the simulations

of Section 5.

Other references concerning parameter estimation in censored regression can be found

in Stute (1999), although most of them are devoted to modelling the conditional mean

parametrically.

3 Asymptotic results

In this section we state the main asymptotic results associated to the testing procedure

we described in the previous section. In Theorem 2 we give an asymptotic representation

for the difference between the two estimators of the distribution of the residuals and in

Theorem 3 we state the weak convergence of the corresponding process. In Corollary 4

we obtain the asymptotic distributions of the test statistics under the null hypothesis.

These results extend the equivalent ones obtained by Van Keilegom, González-Manteiga

and Sánchez-Sellero (2005) for complete data. The proofs can be found in the Appendix.
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The notation used in this section is the following: F (x) = P (X ≤ x), F (y|x) =

P (Y ≤ y|X = x), G(y|x) = P (C ≤ y|X = x), H(y|x) = P (Z ≤ y|X = x), H1(y|x) =

P (Z ≤ y,∆ = 1|X = x), Fε(y) = P (ε ≤ y) = P ((Y −m(X))/σ(X) ≤ y) and Fε0(y) =

P ((Y −mθ0
(X))/σ(X) ≤ y). We denote E = (Z −m(X))/σ(X) and He(y) = P (E ≤ y),

He1(y) = P (E ≤ y,∆ = 1), He(y|x) = P (E ≤ y|X = x), He1(y|x) = P (E ≤ y,∆ =

1|X = x). We also denote E0 = (Z −mθ0
(X))/σ(X) and He0(y) = P (E0 ≤ y), He10(y) =

P (E0 ≤ y,∆ = 1), He0(y|x) = P (E0 ≤ y|X = x), He10(y|x) = P (E0 ≤ y,∆ = 1|X = x).

The derivatives of these functions will be denoted with the corresponding lower case

letters.

The functions He0(y), He10(y), He(y) and He1(y) are estimated by the empirical dis-

tribution functions based on the corresponding estimated censored residuals

Ĥe0(y) = n−1

n
∑

i=1

(Êi0 ≤ y),

Ĥe10(y) = n−1

n
∑

i=1

(Êi0 ≤ y,∆i = 1),

Ĥe(y) = n−1

n
∑

i=1

(Êi ≤ y)

and

Ĥe1(y) = n−1

n
∑

i=1

(Êi ≤ y,∆i = 1)

The following functions also appear in the results below:

ξ(z, δ, y|x) = (1 − F (y|x))

[

−

∫ y∧z

−∞

dH1(s|x)

(1 −H(s|x))2
+
I(z ≤ y, δ = 1)

1 −H(z|x)

]

,

η(z, δ|x) = σ−1(x)

∫ +∞

−∞

ξ(z, δ, v|x)J(F (v|x))dv,

ζ(z, δ|x) = σ−1(x)

∫ +∞

−∞

ξ(z, δ, v|x)J(F (v|x))
v −m(x)

σ(x)
dv,

γ0(y|x) =

∫ y

−∞

he0(s|x)he10(s)

(1 −He0(s))2
ds+

∫ y

−∞

dhe10(s|x)

1 −He0(s)
,

The regularity assumptions needed for the theoretical results are

(A1) (i) X has convex and compact support RX .

(ii) f is two times continuously differentiable and infx∈RX
f(x) > 0.

(iii) m and σ are two times continuously differentiable and infx∈RX
σ(x) > 0.
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(A2) (i) nh4
n → 0 and nh3+2δ

n (log h−1
n )−1 → ∞ for some δ > 0.

(ii) K is a symmetric density function with compact support and K is twice continuously

differentiable.

(iii) J is twice continuously differentiable on the interior of its support,
∫ 1

0
J(s)ds = 1 and

J(s) ≥ 0 for all 0 ≤ s ≤ 1.

(iv) Let T̃x be any value less than the upper bound of the support of H(·|x) such that

infx∈RX
(1−H(T̃x|x)) > 0. Then there exist 0 ≤ s0 ≤ s1 ≤ 1 such that s1 ≤ infx F (T̃x|x),

s0 ≤ inf{s ∈ [0, 1], J(s) 6= 0}, s1 ≥ sup{s ∈ [0, 1], J(s) 6= 0} and infx∈RX
infs0≤s≤s1

f(F−1(s|x)|x) > 0.

(A3) The functions η and ζ are twice continuously differentiable with respect to x and

their first and second derivatives are bounded, uniformly in x ∈ RX , z < T̃x and δ.

(A4) H(y|x), H1(y|x), He0(y|x), He10(y|x), He(y|x) and He1(y|x) are continuously differ-

entiable with respect to x and y up to order three.

(A5) (i) Θ is a compact subset of R
p.

(ii) mθ(x) is two times continuously differentiable with respect to θ for all x ∈ RX .

Assuming (A5) and the representation given in (14), a Taylor expansion of mθ(u) as

function of θ around θ0 leads to

mθ̂(u) −mθ0
(u) = n−1

n
∑

i=1

ϕθ0
(u,Xi, Zi,∆i) + oP (n−1/2),

where

ϕθ0
(u, x, z, δ) =

(

∂mθ(u)

∂θ1

∣

∣

∣

∣

θ=θ0

, . . . ,
∂mθ(u)

∂θp

∣

∣

∣

∣

θ=θ0

)

~ω(x, z, δ). (15)

Theorem 2 Assume (A1)-(A5). Then, under the null hypothesis H0,

F̂ε0(y) − F̂ε(y) = (1 − Fε(y))n
−1

n
∑

i=1

ψθ0
(Xi, Zi,∆i, y) + oP (n−1/2)

uniformly in −∞ < y ≤ T , where

ψθ0
(x, z, δ, y) =

∫

σ−1(u)ϕθ0
(u, x, z, δ)f(u)γ0(y|u)du+ γ0(y|x)η(z, δ|x).

Theorem 3 Assume (A1)-(A5). Then, under the null hypothesis H0, the process Ŵ (y) =

n1/2(F̂ε0(y)− F̂ε(y)),−∞ < y ≤ T converges weakly to a centered Gaussian process W (y)

with covariance function

Cov(W (y),W (y′)) = (1 − Fε(y))(1 − Fε(y
′))E(ψθ0

(X,Z,∆, y), ψθ0
(X,Z,∆, y′)).
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Corollary 4 Assume (A1)-(A5). Then, under the null hypothesis H0,

TKS
d
→ sup

−∞<y<T
|W (y)|

TCM
d
→

∫ T

−∞

W 2(y)dFε(y).

4 Bootstrap approximation

The asymptotic distributions of the test statistics under the null hypothesis given in

Corollary 4 are complicated. We propose a bootstrap procedure in order to approximate

the critical values of the test in practical situations. The resampling procedure is based

on a smoothed version of the ‘naive bootstrap’ described in Efron (1981) and studied in

Akritas (1986).

For i = 1, . . . , n, estimate the censored residuals in a nonparametric way

Êi =
Zi − m̂(Xi)

σ̂(Xi)
. (16)

From the censored sample of estimated residuals (Êi,∆i), i = 1, . . . , n, compute the

Kaplan-Meier estimator F̂ε and standardize these residuals in order to verify the initial

assumption of having location function 0 and scale function 1 (if λ1 =
∫

F̂−1
ε (s)J(s)ds and

λ2 = (
∫

F̂−1
ε (s)2J(s)ds− λ2

1)
1/2 then the standardized residuals are Ẽi = (Êi − λ1)/λ2).

The bootstrap procedure we propose consists of the following steps. For fixed B and

for b = 1, . . . , B,

1. For i = 1, . . . , n:

• Let Y ∗
i,b = mθ̂(Xi) + σ̂(Xi)ε

∗
i,b, where ε∗i,b = Vi,b + aSi,b, Vi,b is drawn from F̂ε

(standardized), Si,b is a random variable with mean zero and variance one to

introduce a small perturbation in the residuals (the perturbation is controlled

by the constant a). Note that the bootstrap responses follow the null hypothesis

by construction.

• Select at random a C∗
i,b from a smoothed version of Ĝ(·|Xi), which is the

Beran estimator of the conditional distributionG(·|Xi) of the censoring variable

obtained by replacing ∆i by 1 − ∆i in the expression of F̂ (·|Xi).
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• Let Z∗
i,b = min(Y ∗

i,b, C
∗
i,b) and ∆∗

i,b = I(Y ∗
i,b ≤ C∗

i,b).

2. The bootstrap sample is {(Xi, Z
∗
i,b,∆

∗
i,b), i = 1, . . . , n}.

3. Let T ∗
KS,b and T ∗

CM,b be the test statistics calculated with the bootstrap sample.

Let T ∗
KS,(b) be the b-th order statistic of T ∗

KS,1, . . . , T
∗
KS,B, and analogously for T ∗

CM,(b).

Then T ∗
KS,([(1−α)B]) and T ∗

CM,([(1−α)B]) approximate the (1−α)-quantiles of the distribution

of TKS and TCM under the null hypothesis respectively.

5 Simulations

We present some simulation results in order to study the finite-sample behavior of the

goodness-of-fit test and the bootstrap approximation of the critical values.

The regression and variance functions are those corresponding to the choice J(s) =

0.75−1I(0 ≤ s ≤ 0.75). We consider the following regression functions:

(i) m(x) = x

(ii) m(x) = x+ 0.6(x− 0.5)

(iii) m(x) = x+ 2x2

(iv) m(x) = x+ 0.5 sin(4πx)

The variance function is σ2(x) = 0.5. The covariate is uniformly distributed in the interval

[0, 1] and the error is exponentially distributed, transformed such that
∫ 1

0
F−1

ε (s)J(s)ds =

0 and
∫ 1

0
F−1

ε (s)2J(s)ds = 1. The censoring variable is C = m(X) + σ(X)ρ, where ρ is

independent of ε and has survival function 1 − Fρ(y) = (1 − Fε(y))
β, with β = 1/3 (25%

of censoring) and β = 1 (50% of censoring).

We will test for two different null hypotheses: a complete linear model

H0 : m(x) = θ1 + θ2x (17)

(in this case models (i) and (ii) correspond to the null hypothesis and (iii) and (iv)

correspond to the alternative hypothesis) and a linear model through the origin

H0 : m(x) = θx (18)

(in this case model (i) corresponds to the null hypothesis and models (ii)-(iv) correspond

to the alternative hypothesis). The parameter is estimated by using the method proposed

by Akritas (1996) for polynomial models described in Section 2.
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Table 1 shows the rejection probabilities in 1000 trials for sample sizes n = 100 and n =

200 and significance levels α = 0.05 and α = 0.10. We choose the kernel of Epanechnikov

K(u) = 0.75(1−u2)I(|u| < 1) to calculate the weights that appear in the Beran estimator.

The bandwidth was chosen of the form h = cn−3/10 and the cases c = 0.75 and c = 1 are

displayed. In the bootstrap we use B = 200 replications, a = n−3/10 and Si,b is a standard

normal.

The threshold T in the definition of the test statistics was chosen to be the largest

observed value of the sample of censored residuals estimated under the null hypothesis.

The level is well approximated in most cases, although this approximation gets worse

when the data are heavily censored (50% for censoring). The behavior of the power is as

expected: it increases with the sample size and it decreases with the amount of censored

data. Model (iii) is very difficult to distinguish from a linear model, especially when the

amount of censored data is 50%.

We believe that the choice of the threshold T may have an impact on the power. When

the data are heavily censored, the Kaplan-Meier estimators have large jumps in the right

tail of the distribution. This may produce large values of the test statistics even under the

null hypothesis. In Table 2 we have repeated the same simulations by using as a threshold

the quantile of order F̂−1
ε0 (F̂ε0(+∞)− 0.10) to avoid this problem. Now the level behaves

reasonably well and the power is better than in the previous table, especially when the

amount of censoring is 50% and the sample size is 200.

6 Data analysis

We illustrate the proposed goodness-of-fit test on a data set concerning male patients

suffering from larynx cancer, diagnosed and treated during the period 1970-1978 in the

Netherlands. More details about this data set can be found in Kardaun (1983). The

variable of interest is the time between first treatment and death. At the end of the study

40 patients were alive (their survival times are censored). Heuchenne and Van Keilegom

(2005) suggested a linear model to explain the relationship between the log of the age of

the patient at diagnosis as a covariate and the log of the survival time as response. These

authors work with the conditional mean.

Figure 1 shows the data and regression curves estimated nonparametrically with score

functions J(s) = 0.50−1I(0.25 ≤ s ≤ 0.75) and J(s) = 0.75−1I(0 ≤ s ≤ 0.75). We

believe that the choice of the score function is not crucial here since the data seem to be
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Table 1: Rejection probabilities (models i-iv) of the tests based on TKS and TCM . The

threshold T is the largest observed value of the sample of censored residuals estimated

under the null hypothesis.

h = 0.75n
−3/10

h = n
−3/10

TKS TCM TKS TCM

% Cens. n Model 0.050 0.100 0.050 0.100 0.050 0.100 0.050 0.100

H0 : m(x) = θ1 + θ2x

25% 100 (i) 0.054 0.098 0.049 0.097 0.043 0.086 0.042 0.096

(ii) 0.044 0.097 0.048 0.105 0.039 0.080 0.041 0.094

(iii) 0.124 0.202 0.130 0.220 0.099 0.165 0.122 0.210

(iv) 0.290 0.423 0.307 0.472 0.201 0.331 0.214 0.389

200 (i) 0.052 0.108 0.047 0.102 0.050 0.114 0.053 0.110

(ii) 0.044 0.110 0.047 0.106 0.038 0.096 0.051 0.106

(iii) 0.260 0.380 0.263 0.375 0.236 0.365 0.267 0.387

(iv) 0.727 0.838 0.760 0.877 0.604 0.761 0.723 0.848

50% 100 (i) 0.039 0.118 0.065 0.135 0.020 0.080 0.036 0.115

(ii) 0.038 0.103 0.055 0.136 0.030 0.086 0.042 0.116

(iii) 0.038 0.106 0.049 0.117 0.036 0.084 0.040 0.097

(iv) 0.066 0.174 0.070 0.194 0.050 0.124 0.046 0.126

200 (i) 0.027 0.110 0.055 0.125 0.021 0.070 0.045 0.118

(ii) 0.029 0.098 0.050 0.118 0.020 0.081 0.045 0.112

(iii) 0.040 0.108 0.063 0.137 0.023 0.087 0.045 0.114

(iv) 0.155 0.310 0.247 0.435 0.080 0.207 0.156 0.327

H0 : m(x) = θx

25% 100 (i) 0.056 0.112 0.056 0.107 0.057 0.108 0.049 0.098

(ii) 0.311 0.427 0.356 0.496 0.283 0.382 0.336 0.466

(iii) 0.439 0.571 0.471 0.601 0.343 0.456 0.438 0.552

(iv) 0.256 0.398 0.148 0.293 0.225 0.385 0.132 0.279

200 (i) 0.065 0.118 0.071 0.121 0.061 0.114 0.060 0.117

(ii) 0.556 0.667 0.596 0.726 0.531 0.636 0.593 0.709

(iii) 0.749 0.827 0.743 0.824 0.688 0.765 0.732 0.807

(iv) 0.703 0.850 0.661 0.865 0.707 0.845 0.693 0.864

50% 100 (i) 0.041 0.103 0.060 0.152 0.030 0.078 0.056 0.117

(ii) 0.098 0.195 0.176 0.321 0.061 0.148 0.134 0.277

(iii) 0.130 0.242 0.215 0.391 0.061 0.154 0.176 0.331

(iv) 0.127 0.259 0.079 0.169 0.098 0.213 0.065 0.137

200 (i) 0.044 0.112 0.059 0.141 0.027 0.088 0.053 0.118

(ii) 0.166 0.295 0.335 0.499 0.135 0.248 0.307 0.471

(iii) 0.280 0.426 0.426 0.590 0.190 0.324 0.394 0.561

(iv) 0.327 0.527 0.356 0.564 0.274 0.457 0.359 0.551
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Table 2: Rejection probabilities (models i-iv) of the tests based on TKS and TCM . The

threshold T is the quantile of order F̂−1
ε0 (F̂ε0(+∞) − 0.10) of the sample of censored

residuals estimated under the null hypothesis.

h = 0.75n
−3/10

h = n
−3/10

TKS TCM TKS TCM

% Cens. n Model 0.050 0.100 0.050 0.100 0.050 0.100 0.050 0.100

H0 : m(x) = θ1 + θ2x

25% 100 (i) 0.063 0.110 0.051 0.107 0.053 0.108 0.054 0.108

(ii) 0.056 0.112 0.052 0.116 0.052 0.092 0.046 0.100

(iii) 0.142 0.226 0.152 0.241 0.127 0.206 0.152 0.241

(iv) 0.340 0.491 0.378 0.542 0.263 0.411 0.290 0.466

200 (i) 0.062 0.128 0.055 0.114 0.061 0.131 0.061 0.115

(ii) 0.057 0.130 0.051 0.115 0.061 0.114 0.058 0.109

(iii) 0.302 0.410 0.277 0.385 0.301 0.431 0.309 0.438

(iv) 0.768 0.868 0.789 0.898 0.704 0.823 0.782 0.886

50% 100 (i) 0.032 0.060 0.050 0.111 0.019 0.044 0.037 0.112

(ii) 0.034 0.064 0.052 0.114 0.029 0.055 0.043 0.090

(iii) 0.064 0.116 0.089 0.146 0.051 0.090 0.059 0.126

(iv) 0.192 0.333 0.196 0.361 0.112 0.230 0.106 0.258

200 (i) 0.034 0.071 0.055 0.109 0.036 0.072 0.050 0.101

(ii) 0.034 0.075 0.054 0.112 0.032 0.059 0.042 0.097

(iii) 0.114 0.204 0.125 0.226 0.090 0.172 0.120 0.196

(iv) 0.500 0.669 0.611 0.757 0.392 0.561 0.526 0.670

H0 : m(x) = θx

25% 100 (i) 0.062 0.119 0.059 0.108 0.063 0.119 0.049 0.104

(ii) 0.321 0.447 0.370 0.513 0.299 0.406 0.352 0.484

(iii) 0.462 0.592 0.496 0.617 0.365 0.479 0.455 0.576

(iv) 0.266 0.421 0.166 0.317 0.250 0.416 0.158 0.319

200 (i) 0.069 0.123 0.070 0.122 0.066 0.118 0.062 0.118

(ii) 0.559 0.680 0.606 0.734 0.547 0.644 0.606 0.722

(iii) 0.766 0.840 0.753 0.833 0.709 0.787 0.740 0.817

(iv) 0.713 0.869 0.677 0.877 0.735 0.858 0.714 0.887

50% 100 (i) 0.049 0.093 0.072 0.140 0.037 0.072 0.054 0.111

(ii) 0.185 0.274 0.298 0.418 0.154 0.230 0.262 0.392

(iii) 0.254 0.369 0.365 0.501 0.157 0.256 0.326 0.466

(iv) 0.228 0.373 0.142 0.254 0.185 0.326 0.111 0.196

200 (i) 0.060 0.098 0.067 0.128 0.043 0.084 0.051 0.112

(ii) 0.393 0.519 0.514 0.654 0.336 0.461 0.496 0.638

(iii) 0.550 0.670 0.628 0.749 0.451 0.580 0.603 0.719

(iv) 0.612 0.782 0.594 0.777 0.598 0.747 0.614 0.779
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Figure 1: Scatter plot of ‘log(survival time)’ versus ‘log(age)’ (crosses for uncensored data

and circles for censored data) and estimated regression curves with J(s) = 0.50−1I(0.25 ≤

s ≤ 0.75) (solid line) and J(s) = 0.75−1I(0 ≤ s ≤ 0.75) (dashed line).

homoscedastic. The two estimated curves are almost parallel.

We have applied our test to verify the claimed linear model with both choices of the

function J . The obtained results were very similar, so we will only discuss the results

corresponding to J(s) = 0.50−1I(0.25 ≤ s ≤ 0.75). We have performed the test over a

wide range of bandwidths (from 0.15 to 0.35) and we have calculated the p-values based

on 1000 bootstrap replications. The threshold T was taken to be the quantile of order

F̂−1
ε0 (F̂ε0(+∞) − 0.10). The Kolmogorov-Smirnov type statistic TKS produced p-values

between 0.29 and 0.99. On the other hand, the Cramér-von Mises type statistic TCM gave

p-values between 0.27 and 0.95. The hypothesis of linearity can then be clearly accepted.

Heuchenne and Van Keilegom (2005) also gave bootstrap confidence intervals for the

parameters of the linear regression. The interval corresponding to the slope of the regres-

sion line contains zero. Hence it is reasonable to test for a constant model instead of the

complete linear model. We have applied the goodness-of-fit test to check the constant

model and the obtained p-values were between 0.12 and 0.73 for TKS and between 0.08

and 0.80 for TCM . It seems that the constant model can also be accepted in this example.

All these results are summarized in Figure 2.
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Figure 2: Graphs of the p-values as function of the bandwidth h when testing for a linear

model (left) and for a constant model (right) with the test statistics TKS (line with circles)

and TCM (line with crosses). The score function is J(s) = 0.50−1I(0.25 ≤ s ≤ 0.75). The

solid horizontal line corresponds to a p-value of 0.05.

Appendix: Proofs

Proof of Theorem 1. The direct implication is trivial. On the other hand, assume that

there exists a θ0 such that Fε0(y) = Fε(y). We can write

P

(

Y −mθ0
(X)

σ(X)
≤ y

)

= P

(

Y −m(X)

σ(X)
+
m(X) −mθ0

(X)

σ(X)
≤ y

)

,

or equivalently

P

(

exp

{

Y −mθ0
(X)

σ(X)

}

≤ y

)

= P

(

exp

{

Y −m(X)

σ(X)

}

exp

{

m(X) −mθ0
(X)

σ(X)

}

≤ y

)

,

for all y. The residuals (Y −m(X))/σ(X) and the covariate X are independent, hence

the moments of the distributions above verify the relation

E

[

(

exp

{

Y −mθ0
(X)

σ(X)

})2ν
]

= E

[

(

exp

{

Y −m(X)

σ(X)

})2ν
]

E

[

(

exp

{

m(X) −mθ0
(X)

σ(X)

})2ν
]

,

and hence

E

[

(

exp

{

m(X) −mθ0
(X)

σ(X)

})2ν
]

= 1,

for all ν ∈ N. Carleman’s condition (see e.g. Feller, 1966) ensures that

P

(

exp

{

m(X) −mθ0
(X)

σ(X)

}

= 1

)

= 1
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or

P

(

m(X) −mθ0
(X)

σ(X)
= 0

)

= 1.

This and the continuity of m implies the equality of m(x) and mθ0
(x) for all x ∈ RX .

Proof of Theorem 2. Since we are working under the null hypothesis, there exists θ0

such that m = mθ0
. From the proof of Proposition A.2 in Van Keilegom and Akritas

(1999), we have that

Ĥe0(y) −He0(y) =
1

n

n
∑

i=1

I(Ei0 ≤ y) −He0(y) (19)

+

∫

he0(y|x)
mθ̂(x) −mθ0

(x)

σ(x)
f(x)dx

+

∫

yhe0(y|x)
σ̂(x) − σ(x)

σ(x)
f(x)dx+ oP (n−1/2),

uniformly in −∞ < y ≤ T . The last term is oP (n−1/2) because of the uniform consistency

of mθ̂ and σ̂. The consistency of σ̂ is given by Proposition 4.5 in Van Keilegom and

Akritas (1999), and the consistency of mθ̂ can be obtained in a similar way.

Define the class of functions MΘ(RX) = {x → (mθ(x) −m(x))/σ(x), θ ∈ Θ}. Firstly,

this class verifies P ((mθ̂(x)−m(x))/σ(x) ∈MΘ(RX)) → 1 as n→ ∞ because of the con-

sistency of the parameter estimate. Secondly, the bracketing numberN[ ](λ
2,MΘ(RX), L2(P )) =

O(λ−2p) for any λ > 0 because of the compactness of the parametric space Θ. This brack-

eting number is smaller than for the class C1+δ
1 (RX) defined in Lemma A.1 in Van Keile-

gom and Akritas (1999). Then we can replace the class C1+δ
1 (RX) by the class MΘ(RX)

in that Lemma and this justifies expression (19).

Using the expression (15), the first integral in (19) can be written as

∫

he0(y|x)
mθ̂(x) −mθ0

(x)

σ(x)
f(x)dx

= n−1

n
∑

i=1

∫

he(y|u)σ
−1(u)ϕθ0

(u,Xi, Zi,∆i)f(u)du+ oP (n−1/2).

From Proposition 4.9 in Van Keilegom and Akritas (1999) and a Taylor expansion,

the second integral in (19) becomes

∫

yhe0(y|x)
σ̂(x) − σ(x)

σ(x)
f(x)dx = −n−1

n
∑

i=1

yhe0(y|Xi)ζ(Zi,∆i|Xi) + oP (n−1/2).
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Hence

Ĥe0(y) −He0(y) =n−1

n
∑

i=1

I(Ei0 ≤ y) −He0(y) (20)

+ n−1

n
∑

i=1

∫

he0(y|u)σ
−1(u)ϕθ0

(u,Xi, Zi,∆i)f(u)du

− n−1

n
∑

i=1

yhe0(y|Xi)ζ(Zi,∆i|Xi) + oP (n−1/2),

uniformly in −∞ < y ≤ T .

Similarly it can be proved that

Ĥe10(y) −He10(y) =n−1

n
∑

i=1

I(Ei0 ≤ y,∆i = 1) −He10(y) (21)

+ n−1

n
∑

i=1

∫

he10(y|u)σ
−1(u)ϕθ0

(u,Xi, Zi,∆i)f(u)du

− n−1

n
∑

i=1

yhe10(y|Xi)ζ(Zi,∆i|Xi) + oP (n−1/2),

uniformly in −∞ < y ≤ T .

Proposition A.2 in Van Keilegom and Akritas (1999) ensures that

Ĥe(y) −He(y) =n−1

n
∑

i=1

I(Ei ≤ y) −He(y) (22)

− n−1

n
∑

i=1

he(y|Xi)η(Zi,∆i|Xi)

− n−1

n
∑

i=1

yhe(y|Xi)ζ(Zi,∆i|Xi) + oP (n−1/2),

and

Ĥe1(y) −He1(y) =n−1

n
∑

i=1

I(Ei ≤ y,∆i = 1) −He1(y) (23)

− n−1

n
∑

i=1

he1(y|Xi)η(Zi,∆i|Xi)

− n−1

n
∑

i=1

yhe1(y|Xi)ζ(Zi,∆i|Xi) + oP (n−1/2),

uniformly in −∞ < y ≤ T .
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From the proof of Theorem 3.1 in Van Keilegom and Akritas (1999), we have that

F̂ε0(y) − Fε0(y) (24)

= (1 − Fε0(y))

[

∫ y

−∞

Ĥe0(s) −He0(s)

(1 −He0(s))2
dHe10(s) +

∫ y

−∞

d(Ĥe10(s) −He10(s))

1 −He0(s)

]

+ oP (n−1/2)

and

F̂ε(y) − Fε(y) (25)

= (1 − Fε(y))

[

∫ y

−∞

Ĥe(s) −He(s)

(1 −He(s))2
dHe1(s) +

∫ y

−∞

d(Ĥe1(s) −He1(s))

1 −He(s)

]

+ oP (n−1/2).

Clearly under H0, it holds that Ei0 = Ei, Fε0 = Fε, He0 = He, He10 = He1, he0 = he

and he10 = he1. By writing F̂ε0(y) − F̂ε(y) = (F̂ε0(y) − Fε(y)) − (F̂ε(y) − Fε(y)) and

substituting (20), (21) in (24) and (22), (23) in (25) the representation given in the

statement of the Theorem follows immediately.

Proof of Theorem 3. Following the notation of van der Vaart and Wellner (1996), if

we define the class of functions

F = {(x, z, δ) −→ (1 − Fε(y))ψθ0
(x, z, δ, y),−∞ < y ≤ T} ,

it is clear that the asymptotic behavior of our process of interest Ŵ (y) is determined by

the asymptotic behavior of the F -indexed process.

We will use the decomposition F =
∑p+1

k=1 F
1
kF

2
k (for any classes of functions G1 and G2,

we denote, in general, G1+G2 = {g1 + g2; g1 ∈ G1, g2 ∈ G2} and G1G2 = {g1g2; g1 ∈ G1, g2 ∈ G2}),

where, for k = 1, . . . , p,

F1
k =

{

(x, z, δ) −→ (1 − Fε(y))

∫

σ−1(u)

(

∂mθ(u)

∂θk

∣

∣

∣

∣

θ=θ0

)

f(u)γ0(y|u)du,−∞ < y ≤ T

}

,

F2
k = {(x, z, δ) −→ ωk(x, z, δ),−∞ < y ≤ T}

and

F1
p+1 = {(u, z, δ) −→ (1 − Fε(y))γ0(y|x),−∞ < y ≤ T} ,

F2
p+1 = {(u, z, δ) −→ η(z, δ|x),−∞ < y ≤ T} .
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For k = 1, . . . , p + 1, the class F1
k consists of uniformly bounded functions of y. If

M is a bound for the absolute value of those functions then their bracketing number is

N[ ](λ,F
1
k , L2(P )) = O(exp(Kλ−1)) for λ < 2M and some K > 0, and N[ ](λ,F

1
k , L2(P )) =

1 for λ > 2M , where P is the measure of probability corresponding to the joint distribution

of (X,Z,∆) and L2(P ) is the L2-norm. Since the class F2
k consists of only one function,

the bracketing number of the product class F1
kF

2
k is the same as the bracketing number

of the class F1
k .

Theorem 2.10.6 in van der Vaart and Wellner (1996) can be applied here to obtain

N[ ](λ,F , L2(P )) ≤

p+1
∏

k=1

N[ ](λ,F
1
k , L2(P )),

and hence

∫ ∞

0

√

logN[ ](λ,F , L2(P ))dλ ≤

p+1
∑

k=1

∫ 2M

0

√

logN[ ](λ,F1
k , L2(P ))dλ <∞.

This proves that F is Donsker by Theorem 2.5.6 in van der Vaart and Wellner (1996).

The weak convergence of the process Ŵ (y) now follows from pages 81 and 82 of the

aforementioned book.

Proof of Corollary 4. The convergence of TKS follows directly from the weak conver-

gence of the process Ŵ (y) and the continuous mapping theorem.

The convergence of TCM requires some more detail. If we apply the Skorohod con-

struction (see Serfling, 1980) to the processes Ŵ (y) and n1/2(F̂ε0(y) − Fε(y)) we obtain

sup
−∞<y≤T

|Ŵ (y) −W (y)| →a.s. 0, (26)

and

sup
−∞<y≤T

|F̂ε0(y) − Fε(y)| →a.s. 0. (27)

Write
∣

∣

∣

∣

∫ T

−∞

Ŵ 2(y)dF̂ε0(y) −

∫ T

−∞

W 2(y)dFε(y)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ T

−∞

(Ŵ 2(y) −W 2(y))dF̂ε0(y)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ T

−∞

W 2(y)d(F̂ε0(y) − Fε(y))

∣

∣

∣

∣

.

We will show that the expression above is negligible, and this suffices to obtain the

convergence of the Cramér-von Mises type statistic.
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The first term of the right hand side of the above inequality is o(1) a.s. due to (26).

The limit process W (y) has bounded and continuous trajectories almost surely. By taking

into account (27) and applying the Helly-Bray Theorem (see p. 97 in Rao, 1965) to each

of the trajectories of W (y), we obtain
∣

∣

∣

∣

∫ T

−∞

W 2(y)d(F̂ε0(y) − Fε(y))

∣

∣

∣

∣

→a.s. 0.
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