
I N S T I T U T D E

S T A T I S T I Q U E

UNIVERSITÉ CATHOLIQUE DE LOUVAIN

D I S C U S S I O N

P A P E R

0515

TWO-SAMPLE TESTS IN FUNCTIONAL DATA

ANALYSIS STARTING FROM DISCRETE DATA

HALL, P. and I. VAN KEILEGOM

http://www.stat.ucl.ac.be



TWO-SAMPLE TESTS IN FUNCTIONAL DATA ANALYSIS

STARTING FROM DISCRETE DATA

Peter Hall1,2 and Ingrid Van Keilegom2

ABSTRACT. One of the ways in which functional data analysis differs from other

areas of statistics is in the extent to which data are pre-processed prior to analysis.
Functional data are invariably recorded discretely, although they are generally sub-

stantially smoothed as a prelude even to viewing by statisticians, let along further
analysis. This has a potential to interfere with the performance of two-sample sta-

tistical tests, since the use of different tuning parameters for the smoothing step,
or different observation times or subsample sizes (i.e. numbers of observations per

curve), can mask the differences between distributions that a test is really trying
to locate. In this paper, and in the context of two-sample tests, we take up this

issue. Ways of pre-processing the data, so as to minimise the effects of smoothing,
are suggested. We show theoretically and numerically that, by employing exactly

the same tuning parameter (e.g. bandwidth) to produce each curve from its raw

data, significant contributions to level inaccuracy and power loss can be avoided.
Provided a common tuning parameter is used, it is often satisfactory to choose

that parameter along conventional lines, as though the target was estimation of the
continuous functions themselves, rather than testing hypotheses about them. More-

over, in this case, using a second-order smoother (such as local-linear methods), the
subsample sizes can be almost as small as the square root of sample sizes before the

effects of smoothing have any first-order impact on the results of a two-sample test.
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1. INTRODUCTION

Although, in functional data analysis, the data are treated as though they are in the

form of curves, in practice they are invariably recorded discretely. They are subject

to a pre-processing step, usually based on local-polynomial or spline methods, to

transform them to the smooth curves to which the familiar algorithms of functional

data analysis are applied. In many instances the pre-processing step is not of great

importance. However, in the context of two-sample hypothesis testing it has the

potential to significantly interfere with both power and level accuracy. Our aim

in the present paper is to explore this issue, and suggest methods which allow the

effects of smoothing to be minimised.

This problem has no real analogue in the context of two-sided tests applied to

non-functional data. Although smoothing methods are sometimes used there, for

example to produce alternatives to traditional two-sample hypothesis tests, they

are not necessary for obtaining the data to which the tests are applied. Indeed,

there is rightly a debate as to whether statistical smoothing should be used at all,

in a conventional sense, when constructing two-sample hypothesis tests. Employing

a small bandwidth (in theoretical terms, a bandwidth which converges to zero as

sample size increases) can reduce statistical power unnecessarily, although from

other viewpoints power can be increased. See, for example, the discussion by Ingster

(1993), Fan (1994), Anderson et al. (1994), Fan (1998), Fan and Ullah (1999) and

Li (1999).

By way of contrast, functional datasets are usually exchanged by researchers

in post-processed form, after the application of a smoothing algorithm; that is

seldom the case for data in related problems such as nonparametric regression. The

widespread use of pre-process smoothing for functional data makes the effects of

smoothing more insidious than usual, and strengthens motivation for understanding

the impact that smoothing might have.

In the context of two-sample hypothesis testing, our main recommendation is

appropriate in cases where the “subsample sizes” (that is, the numbers of points

at which data are recorded for individual functions) do not vary widely. There we

suggest that exactly the same tuning parameters be used to produce each curve

from its raw data, for all subsamples in both datasets. For example, when using

kernel-based methods this would mean using the same bandwidth in all cases; for

splines it would mean using the same penalty, or the same knots. Such a choice

ensures that, under the null hypothesis that the two samples of curves come from

identical populations, the main effects of differing observation-time distributions and
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differing subsample sizes (for the different curves) cancel. As a result, the effect that

smoothing has on bias is an order of magnitude less than it would be if different

bandwidths, tuned to the respective curves, were used. The latter approach can

lead to both level inaccuracy and power loss for a two-sample test.

The constraint here that subsample sizes do not differ widely is actually quite

mild. In asymptotic terms we ask only that the minimum size, divided by the

maximum size, be bounded away from zero. If this condition is satisfied, and

if the same bandwidth is used throughout; if the smoother is of second order, for

example local-linear smoothing; and if the lesser of the two sample sizes is of smaller

order than subsample size raised to the power 8
5
; then the effects of smoothing are

negligible in a two-sample hypothesis test.

This condition is quite generous. It allows subsample size to be an order of

magnitude smaller than sample size, without smoothing having a first-order effect on

performance. By way of contrast, if different bandwidths are used for the different

curves, tuned to the local regularities of those functions as well as to the respective

subsample sizes, then problems can arise when the lesser of the two sample sizes is

of smaller order than subsample size raised to the power 4
5 . This is a substantially

more restrictive condition.

The fact that the common tuning parameter can be chosen by a conventional

curve-estimation method, such as cross-validation or a plug-in rule, is an attrac-

tive feature of the proposal. New smoothing-parameter choice algorithms are not

essential. Nevertheless, it can be shown that under more stringent assumptions

a bandwidth of smaller size can be advantageous. See sections 3.3, 4 and 5.3 for

discussion.

Recent work on two-sample hypothesis tests in nonparametric and semipara-

metric settings includes that of Louani (2000), Claeskens et al. (2003) and Cao and

Van Keilegom (2005). Extensive discussion of methods and theory for functional

data analysis is given by Ramsay and Silverman (1997, 2002). Recent contributions

to hypothesis testing in this field include those of Fan and Lin (1998), Locantore et

al. (1999), Spitzner et al. (2003), Cuevas et al. (2004) and Shen and Faraway (2004).

2. STATEMENT OF PROBLEM, AND METHODOLOGY

2.1. The data and the problem. We observe data

Uij = Xi(Sij) + δij , 1 ≤ i ≤ m, 1 ≤ j ≤ mi ,

Vij = Yi(Tij) + ǫij , 1 ≤ i ≤ n , 1 ≤ j ≤ ni ,
(2.1)

where X1, X2, . . . are identically distributed as X ; Y1, Y2, . . . are identically dis-

tributed as Y ; the δij ’s are identically distributed as δ; the ǫij ’s are identically dis-
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tributed as ǫ; X and Y are both random functions, defined on the interval I = [0, 1];

the observation errors, δij and ǫij , have zero means and uniformly bounded vari-

ances; the sequences of observation times, Si1, . . . , Simi
and Ti1, . . . , Tini

, are either

regularly spaced on I or drawn randomly from a distribution (possibly different for

each i, and also for S and T ) having a density that is bounded away from zero on I;

and the quantities Xi1 , Yi2 , Si1j1 , Ti2j2 , δi1 and ǫi2 , for 1 ≤ i1 ≤ m, 1 ≤ j1 ≤ mi1 ,

1 ≤ i2 ≤ n and 1 ≤ j2 ≤ ni2 , are all totally independent.

Given the data at (2.1), we wish to test the null hypothesis, H0, that the

distributions of X and Y are identical. In many cases of practical interest, X and

Y would be continuous with probability 1, and then H0 would be characterised by

the statement,

FX(z) = FY (z) for all continuous functions z ,

where FX and FY are the distributional functionals of X and Y , respectively:

FX(z) = P
{
X(t) ≤ z(t) for all t ∈ I

}
,

FY (z) = P
{
Y (t) ≤ z(t) for all t ∈ I

}
.

In some problems, the time points Sij and Tij would be regularly spaced on

grids of the same size. For example, they might represent the times of monthly ob-

servations of a process, such as the number of tons of a certain commodity exported

by a particular country in month j of year i, in which case mi = ni = 12 for each i.

(The differing lengths of different months could usually be ignored. In examples

such as this we might wish first to correct the data for linear or periodic trends.)

Here the assumption of independence might not be strictly appropriate, but the

methods that we shall suggest will be approximately correct under conditions of

weak dependence.

In other cases the values of mi and ni can vary from one index i to another,

and in fact those quantities might be modelled as conditioned values of random

variables. The observation times may also exhibit erratic variation. For example,

in longitudinal data analysis, Uij might represent a measurement of the condition

of the ith type-X patient at the jth time in that patient’s history. Since patients

are seen only at times that suit them, then both the values of the observation times,

and the number of those times, can vary significantly from patient to patient.

In general, unless we have additional knowledge about the distributions of X

and Y (for example, both distributions are completely determined by finite param-

eter vectors), we cannot develop a theoretically consistent test unless the values of
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mi and ni increase without bound as m and n increase. Therefore, the divergence

of mi and ni will be a key assumption in our theoretical analysis.

2.2. Methodology for hypothesis testing. Our approach to testing H0 is to com-

pute estimators, X̂i and Ŷi, of Xi and Yi, by treating the problem as one of non-

parametric regression and passing nonparametric smoothers through the datasets

(Si1, Ui1), . . . , (Simi
, Uimi

) and (Ti1, Vi1), . . . , (Tini
, Vini

), respectively. Then, treat-

ing the functions X̂1, . . . , X̂m and Ŷ1, . . . , Ŷn as independent and identically dis-

tributed observations of X and Y , respectively (under our assumptions they are at

least independent), we construct a test of H0.

For example, we might compute estimators F̂X and F̂Y of FX and FY , respec-

tively:

F̂X(z) =
1

m

m∑

i=1

I
(
X̂i ≤ z

)
, F̂Y (z) =

1

n

n∑

i=1

I
(
Ŷi ≤ z

)
, (2.2)

where the indicator I(X̂i ≤ z) is interpreted as I{X̂i(t) ≤ z(t) for all t ∈ I}, and

I(Ŷi ≤ z) is interpreted similarly. These quantities might be combined into a test

statistic of Cramér-von Mises type, say

T̂ =

∫ {
F̂X(z) − F̂Y (z)

}2
µ(dz) , (2.3)

where µ denotes a probability measure on the space of continuous functions.

The integral here can be calculated by Monte Carlo simulation, for example as

T̂N =
1

N

N∑

i=1

{
F̂X(Mi) − F̂Y (Mi)

}2
, (2.4)

where M1, . . . ,MN are independent random functions with the distribution of M ,

say, for which µ(A) = P (M ∈ A) for each Borel set A in the space of continuous

functions on I. Of course, the Mi’s are independent of F̂X and F̂Y , and T̂N → T̂ ,

with probability one conditional on the data, as N → ∞.

2.3. Methodology for estimating Xi and Yi. For brevity we shall confine attention

to just one technique, local-polynomial methods, for computing X̂i and Ŷi. (Results

can be expected to be similar if one uses other conventional smoothers, for example

splines.) Taking the degree of the polynomial to be odd, and estimating Xi, we

compute the value (â0, . . . , â2r+1) of the vector (a0, . . . , a2r+1) that minimises

mi∑

j=1

{
Uij −

2r−1∑

k=0

ak (Sij − t)k

}2

K

(
t− Sij

hXi

)
,

where r ≥ 1 is an integer, hXi is a bandwidth, and K, the kernel function, is a

bounded, symmetric, compactly supported probability density. Then, â0 = X̂i(t).
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In the particular case r = 1 we obtain a local-linear estimator of Xi(t),

X̂i(t) =
Ai2(t)Bi0(t) −Ai1(t)Bi1(t)

Ai0(t)Ai2(t) −Ai1(t)2
,

where

Air(t) =
1

mihXi

mi∑

j=1

(
t− Sij

hXi

)r

K

(
t− Sij

hXi

)
,

Bir(t) =
1

mihXi

mi∑

j=1

Uij

(
t− Sij

hXi

)r

K

(
t− Sij

hXi

)
,

hXi denotes a bandwidth and K is a kernel function. The estimator Ŷi is con-

structed similarly. Local-linear methods have an advantage over higher-degree local-

polynomial approaches in that they suffer significantly less from difficulties arising

from singularity, or near-singularity, of estimators.

TreatingXi as a fixed function (that is, fixing i and conditioning on the stochas-

tic process Xi); and assuming that Xi has 2(r + 1) bounded derivatives, and hXi

is chosen of size m
−1/(2r+1)
i ; the estimator X̂i converges to Xi at the mean-square

optimal rate m
−2r/(2r+3)
i , as mi increases. See, for example, Fan (1993), Fan and

Gijbels (1996) and Ruppert and Wand (1994) for discussion of both practical im-

plementation and theoretical issues.

2.4. Bandwidth choice. A number of potential bandwidth selectors are appropriate

when all the subsample sizes mi and nj are similar and the bandwidths h = hXi =

hY j are identical. Theoretical justification for using a common bandwidth, when the

goal is hypothesis testing rather than function estimation, will be given in section 3.

One approach to common bandwidth choice is to use a “favourite” method

to compute an empirical bandwidth for each curve Xi and Yj , and then take the

average value to be the common bandwidth. Another technique, appropriate in

the case of plug-in rules, is to use an average value of each of the components of

a plug-in bandwidth selector, and assemble the average values, using the plug-in

formula, to form the common bandwidth. A third approach, valid in the context

of cross-validation, is to use a criterion which is the average of the cross-validatory

criteria corresponding to the different curves. For each of these methods, “average”

might be defined in a weighted sense, where the weights represent the respective

subsample sizes.

2.5. Bootstrap calibration. Bootstrap calibration is along conventional lines, as

follows. Having constructed smoothed estimators X̂i and Ŷi of the functions Xi

and Yi, respectively, pool them into the class

Z = {Z1, . . . , Zm+n} =
{
X̂1, . . . , X̂m

}
∪

{
Ŷ1, . . . , Ŷn

}
. (2.5)
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By sampling randomly, with replacement, from Z, derive two independent resamples

{X∗
1 , . . . , X

∗
m} and {Y ∗

1 , . . . , Y
∗
n }; compute

F̄ ∗
X(z) =

1

m

m∑

i=1

I
(
X∗

i ≤ z
)
, F̄ ∗

Y (z) =
1

n

n∑

i=1

I
(
Y ∗

i ≤ z
)
;

and finally, calculate

T
∗

=

∫ {
F̄ ∗

X(z) − F̄ ∗
Y (z)

}2
µ(dz) . (2.6)

Of course, F̄ ∗
X and F̄ ∗

Y are bootstrap versions of the actual empirical distribu-

tion functionals,

F̄X(z) =
1

m

m∑

i=1

I
(
Xi ≤ z

)
, F̄Y (z) =

1

n

n∑

i=1

I
(
Yi ≤ z

)
, (2.7)

which we would have computed if we had access to the full-function data Xi and Yi.

Likewise, T is the ideal, but impractical, test statistic that we would have used if

we had those data:

T =

∫ {
F̄X(z) − F̄Y (z)

}2
µ(dz) . (2.8)

Suppose the desired critical level for the test is 1− α. By repeated resampling

from Z we can compute, by Monte Carlo means, the critical point, t̂α say, given by

P
(
T

∗
≥ t̂α

∣∣ Z
)

= α . (2.9)

We reject the null hypothesis H0, that there is no difference between the distribu-

tions of X and Y , if T̂ > t̂α.

At this point, some of the potential difficulties of two-sample hypothesis testing

become clear. Regardless of how we smooth the data, the conditional expected value

of F̄ ∗
X − F̄ ∗

Y , given Z, is exactly zero. However, even if H0 is correct, E(F̂X − F̂Y )

will generally not vanish, owing to the different natures of the datasets providing

information about the functions Xi and Yi (for example, different distributions of

the sampling times), and the different ways we constructed X̂i and Ŷi from those

data. Therefore, the test statistic T̂ suffers biases which are not reflected in its

bootstrap form, T
∗
, and which can lead to level inaccuracy and power loss for the

test. Of course, this problem would vanish if we could use F̄X − F̄Y in place of

F̂X − F̂Y for the test; that is, if we could employ T instead of T̂ . But in practice,

that is seldom possible.

2.6. Choice of the measure µ. Recall from (2.4) that our application of the measure

µ, to calculate the statistic T̂ , proceeds by simulating the stochastic process M of



7

which µ defines the distribution. Therefore it is necessary only to construct M . It

is satisfactory to define M in terms of its Karhunen-Loève expansion,

M(t) = µ(t) +

∞∑

i=1

ζi φi(t) ,

where µ(t) = E(M(t)), the functions φi form a complete orthonormal sequence on

I and the random variables ζi are uncorrelated and have zero mean.

We shall take ζi = θi ξi, where θ1 > θ2 > . . . > 0 are positive constants

decreasing to zero, and the random variables ξi are independent and identically

distributed with zero means and unit variances. The functions φi could be chosen

empirically, to be the orthonormal functions corresponding to a principal component

analysis of the dataset Z at (2.5). In this case they would form the sequence of

eigenvectors of a linear operator, the kernel of which is the function

L(s, t) =
1

m+ n

m+n∑

i=1

{Zi(s) − Z(s)} {Zi(t) − Z(t)} ,

where Z = (m+n)−1
∑

i≤m+n Zi. The constants θi would in that case be given by

the square-root of the corresponding eigenvalues.

However, exposition is simpler if we take the φi’s to be a familiar orthonormal

sequence, such as the cosine sequence on I:

φ1 ≡ 1 , φi+1(x) = 21/2 cos(iπx) for i ≥ 1 .

(Recall that I = [0, 1].) In particular, this makes it easier to describe the smoothness

of the functions M . If θi = O(i−a) as i → ∞, where a > 3; and if the common

distribution of the ξi’s is compactly supported; then there exist C, c > 0 such that,

with probability 1, |M ′′(s) −M ′′(t)| ≤ C |s − t|c. This is the level of regularity

that our theoretical properties require of the distribution of M . Numerical work

in section 4 argues that in practice it is adequate to take the process M to have

a light-tailed distribution, such as the Gaussian; it is not necessary to assume the

distribution is compactly supported.

3. THEORETICAL PROPERTIES

3.1. Overview. Section 3.2 gives a simple approximation, T̃ , to T̂ ; section 3.3 treats

a centring term, D, which represents the main difference between T̃ and T ; and

section 3.4 describes asymmetric properties of T . These steps in our argument cul-

minate in section 3.5, which draws our main conclusions. In particular, section 3.5
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combines results of sections 3.2–3.4 to give conditions under which the statistics

T̂ and T have the same asymptotic properties. It also shows that the practical

statistic T̂ leads to tests with the same asymptotic level as its idealised counterpart

T , and to the same asymptotic power against local alternatives.

3.2. Main approximation property. Let F̄X , F̄Y and T be the quantities defined

at (2.7) and (2.8). In section 2.5 we discussed the fact that the bootstrap form

of T does not adequately reflect differences between the functionals F̂X and F̂Y

on which the practicable test statistic T̂ is based. Our main result in the present

section shows that the main aspects of these potential problems can be encapsulated

quite simply in terms of a difference between expected values.

In particular, under very mild conditions, difficulties associated with stochastic

variability of F̂X − F̂Y are negligibly small; and the impact of the difference,

D = E(F̄X − F̄Y ) − E(F̂X − F̂Y ) ,

between the mean of F̂X − F̂Y and the mean of F̄X − F̄Y , can be summarised very

simply. Theorem 1 below shows that T̂ is closely approximated by

T̃ =

∫ {
F̄X(z) − F̄Y (z) −D(z)

}2
µ(dz) . (3.1)

The sets of assumptions A.1 and A.2, used for Theorems 1 and 2 respectively, will

be collected together in section 5.

Theorem 1. If the measure µ has no atoms, and assumptions A.1 hold, then

∣∣T̂ 1/2 − T̃ 1/2
∣∣ = op

(
m−1/2 + n−1/2

)
. (3.2)

To interpret this result, note that, under the null hypothesis that the distri-

butions of X and Y are identical, T is of size m−1 + n−1. (Further discussion of

this point is given in section 3.4.) The quantity, D(z), that distinguishes T̃ from

T , can only increase this size. Result (3.2) asserts that the difference between T̂ 1/2

and T̃ 1/2 is actually of smaller order than the asymptotic sizes of either T̂ 1/2 or

T̃ 1/2, and so D(z) captures all the main issues that will affect the power, and level

accuracy, of the statistic T̂ , compared with T .

3.3. Properties of D(z). First we summarise properties of D(z) when (2r − 1)st

degree local-polynomial estimators are employed. Using arguments similar to those

we shall give in section 6.2, it may be shown that for functions z that are sufficiently

smooth, and for each η > 0,

P
(
X̂i ≤ z

)
= P (Xi ≤ z) +O

{
h2r−η

Xi + (mihXi)
η−1

}
. (3.3)
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This result, and its analogue for the processes Ŷi and Yi, lead to the following result:

Under the null hypothesis, and for each η > 0,

D(z) = O

[
1

m1−η

m∑

i=1

{
h2r

Xi + (mihXi)
−1

}
+

1

n1−η

n∑

i=1

{
h2r

Y i + (nihY i)
−1

}]
. (3.4)

Neglecting the effects of η; assuming that the subsample sizes mi and ni are close

to a common value, ν say; and supposing that the bandwidths, hXi and hY i,

are also taken of similar sizes; (3.4) suggests allowing those bandwidths to be of

size ν−1/(2r+1), in which case D(z) = O(ν−2r/(2r+1)).

While this approach is of interest, the extent of reduction in subsampling effects,

under H0, can often be bettered by taking the bandwidths h = hXi = hY j to be

identical, for each 1 ≤ i ≤ m and 1 ≤ j ≤ n. That technique allows the quantities

that contribute the dominant bias terms, involving h2r
Xi and h2r

Y i, in (3.3) and its

analogue for the Y -sample, to cancel perfectly. That reduces the bias contribution,

from the 2rth to the 2(r + 1)st power of bandwidth.

Using identical bandwidths makes local-linear methods, which correspond to

taking r = 1 in the formulae above, particularly attractive, for at least two reasons.

Firstly, the contribution of bias is reduced to that which would arise through fitting

third-degree, rather than first-degree, polynomials in the case of non-identical band-

widths, yet the greater robustness of first-degree fitting is retained. Secondly, the

appropriate bandwidth is now close to ν−1/5, the conventional bandwidth size for

estimating the functions Xi and Yi as functions in their own right. This suggests

that tried-and-tested bandwidth selectors, such as those discussed in section 2.4,

could be used.

The mathematical property behind the common-bandwidth recommendation

is the following more detailed version of (3.3), which for simplicity we give only in

the local-linear case, i.e. r = 1. If h = hXi for each i, and h is of size ν−1/5, or

larger, then for each η > 0,

P
(
X̂i ≤ z

)
= P

(
Xi + 1

2
κ2 h

2X ′′
i ≤ z

)
+O

{
h4−η + (νh)η−1

}
, (3.5)

uniformly in smooth functions z, where κ2 =
∫
u2K(u) du. If H0 holds, and we use

the same bandwidth, h, for the Y data as well as for the X data, then

P
(
Xi + 1

2 κ2 h
2X ′′

i ≤ z
)

= P
(
Yi + 1

2 κ2 h
2 Y ′′

i ≤ z
)
, (3.6)

for each i and each function z. Therefore (3.5) implies that, under H0, and assuming

that the subsample sizes are all similar to ν,

P
(
X̂i ≤ z

)
− P

(
Ŷj ≤ z

)
= O

{
h4−η + (νh)η−1

}
,
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for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Optimising the right-hand side of (3.6) with respect to h suggests using a

relatively conventional bandwidth selector of size ν−1/5. A small value of the right-

hand side of (3.6) implies that D is close to zero, which in turn ensures that T̂

(which is close to T̃ , as shown in section 3.2) is well approximated by T . That

result implies that the bootstrap test is unlikely to reject H0 simply because of

poor choice of smoothing parameters; see section 5.2 for further discussion.

We conclude with a concise statement of (3.5). Given sequences am and bm

of positive numbers, write am ≍ bm to denote that am/bm is bounded away from

zero and infinity as n→ ∞. The reader is referred to section 5.2 for a statement of

assumptions A.2 for Theorem 2. These include the condition that all bandwidths

h = hXi are identical, and h ≍ ν−1/q where 3 < q <∞.

Theorem 2. If r = 1 and assumptions A.2 hold then, for each η > 0,

P
(
X̂i ≤ z

)
− P

(
Xi + 1

2 κ2 h
2X ′′

i ≤ z
)

=

{
O(νη−(q−1)2/4q) if 3 < q ≤ 5
O(νη−4/q) if q > 5 ,

(3.7)

where the “big oh” terms are of the stated orders uniformly in functions z that have

two Hölder-continuous derivatives, and in 1 ≤ i ≤ m.

3.4. Asymptotic distribution of T , and power. If m and n vary in such a way that

m/n→ ρ ∈ (0,∞) as m→ ∞ , (3.8)

and if, as prescribed by H0, the distributions of X and Y are identical, then T

satisfies

mT → ζ ≡

∫ {
ζX(z) − ρ1/2 ζY (z)

}2
µ(dz) , (3.9)

where the convergence is in distribution and ζX(z) and ζY (z) are independent Gaus-

sian processes with zero means and the same covariance structures as the indicator

processes I(X ≤ z) and I(Y ≤ z), respectively. In particular, the covariance of

ζX(z1) and ζX(z2) equals FX(z1 ∧ z2) − FX(z1)FX(z2).

It follows directly from (3.9) that the asymptotic value of the critical point for

an α-level test of H0, based on T , is the quantity uα such that P (ζ > uα) = α.

Analogously, the critical point t̂α for the bootstrap statistic T
∗

(see (2.6) and (2.9))

converges, after an obvious rescaling, to uα as sample size increases: under H0,

P (mT > uα) → α , m t̂α → uα , (3.10)

where the second convergence is in probability. Of course, these are conventional

properties of bootstrap approximations. In section 3.5 we shall discuss conditions
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that are sufficient for the practical test statistic T̂ , rather than its ideal form T , to

have asymptotically correct level; see (3.17).

Power properties under local alternatives are also readily derived. In particular,

if FY is fixed and

FX(z) = FY (z) +m−1/2 c δ(z) , (3.11)

where δ is a fixed function and c is a constant, then with convergence interpreted

in distribution,

mT →

∫ {
ζY 1(z) + c δ(z) − ρ1/2 ζY 2(z)

}2
µ(dz) , (3.12)

of which (3.9) is a special case. In (3.12), ζY 1 and ζY 2 are independent Gaussian

processes each with zero mean and the covariance structure of ζY .

From this result and the second part of (3.10) it is immediate that, provided

δ is not almost surely zero with respect to µ measure, a test based on the ideal

statistic T , but using the bootstrap critical point t̂α, is able to detect departures

proportional to m−1/2 δ:

lim
c→∞

lim inf
m→∞

Pc

(
T > t̂α

)
= 1 , (3.13)

where Pc denotes probability under the model where FY is fixed and FX is given

by (3.11). In section 3.5 we shall note that if we use a common bandwidth, and if

the subsample sizes are not too much smaller than the sample sizes m and n, then

the same result holds true for the practicable statistic T̂ .

Proofs of (3.9), (3.10) and (3.12) are straightforward. They do not require con-

vergence of function-indexed empirical processes to Gaussian processes, and proceed

instead via low-dimensional approximations to those empirical processes.

3.5. Sufficient conditions for T̂ and T to have identical asymptotic distributions

under H0. Assume (3.8) and the conditions of Theorem 2 for both the X and Y

populations, and in particular that all the subsample sizes mi and ni are of the

same order, in the sense that

ν ≍ min
1≤i≤m

mi ≍ max
1≤i≤m

mi ≍ min
1≤i≤n

ni ≍ max
1≤i≤n

ni (3.14)

as m,n→ ∞. Take h to be of conventional size, h ≍ ν−1/5. Then Theorem 2, and

its analogue for the Y sample, imply that under H0,

D(z) = O
(
νη−4/5

)
, (3.15)

uniformly in functions z with two Hölder-continuous derivatives, for each η > 0.
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Theorem 1 implies that, in order for the practical statistic T̂ , and its “ideal”

version T , to have identical asymptotic distributions, it is necessary only that D(z)

be of smaller order than the stochastic error of F̄X − F̄Y . Equivalently, if (3.8)

holds, D(z) should be of smaller order than m−1/2, uniformly in functions z with

two Hölder-continuous derivatives. For that to be true it is sufficient, in view of

(3.15), that

m = O
(
ν8/5−η

)
(3.16)

for some η > 0.

It follows from (3.10) that, provided (3.16) holds and the null hypothesis is

correct,

P
(
mT̂ > uα

)
→ α . (3.17)

This is the analogue of the first part of (3.10), for the practicable statistic T̂ rather

than its ideal form T . Similarly, result (3.13) holds, for T̂ rather than T , if a

common bandwidth is used and the subsample sizes satisfy (3.14). This confirms

the ability of the practicable test, based on T̂ , to detect semiparametric departures

from the null hypothesis.

Condition (3.16) is surprisingly mild. It asserts that, in order for the effects of

estimating Xi and Yi to be negligible, it is sufficient that the subsample sizes mi

and ni be of larger order than the 5
8th root of the smaller of the two sample sizes,

m and n.

4. NUMERICAL PROPERTIES

Suppose that Sij (1 ≤ i ≤ m; 1 ≤ j ≤ mi) are independent and identically

distributed (i.i.d.) and have a uniform distribution on [0, 1] and that Tij (1 ≤ i ≤

n; 1 ≤ j ≤ ni) are i.i.d. with density given by 2− b+2(b− 1)t for 0 ≤ t ≤ 1 and 0 <

b < 2. Note that this density reduces to the uniform density when b = 1. We take

b = 1.2. The errors δij and ǫij are independent and come from a normal distribution

with mean zero and standard deviation σ = 0.1 and 0.3 respectively. Suppose that

X1, . . . , Xm are identically distributed as X , where X(t) =
∑

k≥1 ck NkX ψk(t),

ck = e−k/2, NkX (k ≥ 1) are i.i.d. standard normal random variables, and ψk(t) =

21/2 sin{(k − 1)πt} (k > 1) and ψ1 ≡ 1 are orthonormal basis functions. Similarly,

let Y1, . . . , Yn be identically distributed as Y , where

Y (t) =
∞∑

k=1

ck NkY 1 ψk(t) + a
∞∑

k=1

ak NkY 2 ψ
∗
k(t) ,

NkY 1 and NkY 2 are i.i.d. standard normal variables, a ≥ 0 controls the deviation
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from the null model (a = 0 under H0), ak = k−2, and

ψ∗
k(t) =






1 if k = 1
21/2 sin{(k − 1)π(2t− 1)} if k is odd and k > 1
21/2 cos{(k − 1)π(2t− 1)} if k is even

are orthonormal basis functions. For practical reasons, we truncate the infinite

sum in the definition of X(t) and Y (t) at k = 15. Define Uij = Xi(Sij) + δij

(1 ≤ i ≤ m; 1 ≤ j ≤ mi) and Vij = Yi(Tij) + ǫij (1 ≤ i ≤ n; 1 ≤ j ≤ ni).

Finally, M1, . . . ,MN are independent and have the same distribution as M , where

M(t) =
∑

k≥1 ckNkZ φk(t), NkZ are i.i.d. standard normal variables and φk(t) =

21/2 cos{(k− 1)πt} (k > 1) and φ1 ≡ 1 are orthonormal functions. We take N = 50

and truncate the infinite sum after 15 terms. The simulation results are based on 500

samples, and the critical values of the test are obtained from 250 bootstrap samples.

The functions X(t) and Y (t) are estimated by means of local-linear smoothing. The

bandwidth is selected by minimising the following cross-validation type criterion:

h = argmin
h

[
(mim)−1

m∑

i=1

mi∑

j=1

{Uij − X̂i(Sij)}
2 +(nin)−1

n∑

i=1

ni∑

j=1

{Vij − Ŷi(Tij)}
2

]
.

The function K is the biquadratic kernel, K(u) = (15/16)(1− u2)2I(|u| ≤ 1).

The results for m = n = 15, 25, 50 and m1 = n1 = 20 and 100 are summarised

in Figure 1. The level of significance is α = 0.05 and is indicated in the figure.

The graphs show that under the null hypothesis the level is well respected and the

power increases for larger values of m,n,m1, n1 and a. The value of the subsample

sizes m1 and n1 has limited impact on the power, whereas this is clearly not the

case for the sample sizes m and n. Other settings that are not reported here (equal

variances in the two populations, bigger sample and subsample sizes, ...) show

similar behavior for the power curves.

In section 3.3 we explained why it is recommended to take hXi
= hYj

= h. We

shall now verify in a small simulation study that identical bandwidths indeed lead

to higher power. Consider the same model as above, except that now the standard

deviation of the errors δij and ǫij is 0.2 and 0.5 respectively. Take m = n = 15, 25,

and 50, m1 = 20 and n1 = 100. Figure 2 shows the power curves for this model. The

rejection probabilities are obtained using either identical bandwidths (estimated by

means of the above cross-validation procedure) or using different bandwidths for

each sample (estimated by means of a cross-validation procedure for each sample).

The graph suggests that under H0 the empirical level is close to the nominal level

in both cases. The power is however considerably lower when different bandwidths

are used than when the same bandwidth is used for both samples.
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Finally, we apply the proposed method to temperature data over the course

of a year, taken from 35 weather stations across Canada. The raw data curves are

shown in Figure 3. Each data point in the graph represents the mean temperature

recorded by a weather station for the entire month, collected over 30 years. The

data are taken from Ramsay and Silverman (2002). A detailed description and

analysis of these data can be found there. Here, we are interested in whether

weather patterns in three different regions of Canada (namely the Atlantic, Pacific

and Continental region) are equal. The sample sizes for the three regions are 14, 5

and 13 respectively and the subsample size is 12 for all curves (one observation per

month).

First we obtain the optimal bandwidth for each combination of two regions by

means of the above cross-validation procedure. In each case we find h = 3.0. Next,

we need to determine an appropriate measure µ or equivalently an appropriate

process M . For this, we follow the procedure described in section 2.6 and let

φi(t) and θ2
i be the eigenfunctions and eigenvalues corresponding to a principal

component analysis (PCA) of the dataset, and truncate the infinite sum at four

terms. The variables ξi (1 ≤ i ≤ 4) are taken as independent standard normal

variables, and the mean function µ(t) is estimated empirically. The estimation of

these functions is carried out by using the PCA routines available on J. Ramsay’s

homepage (http://ego.psych.mcgill.ca/misc/fda/). Next, based on the so-obtained

process M , we calculate the test statistics for each comparison and approximate the

corresponding p-values from 1000 resamples. The p-values are 0.394 for the atlantic

region compared with the pacific region, 0.003 for atlantic versus continental, and

0.070 for pacific versus continental.

5. ASSUMPTIONS FOR SECTION 3

5.1. Conditions for Theorem 1. The assumptions are the following, comprising A.1:

for some η > 0,

min
(

min
1≤i≤m

mi, min
1≤i≤n

ni

)
→ ∞ , (5.1)

max
1≤i≤m

hXi + max
1≤i≤n

hY i → 0 , min
1≤i≤m

(
m1−η

i hXi

)
+ min

1≤i≤n

(
n1−η

i hY i

)
→ ∞ , (5.2)

K is a bounded, symmetric, compactly-supported probability density, (5.3)

the observation times Sij and Tij are independent random variables,
identically distributed for each i, and with densities that are bounded (5.4)
away from zero uniformly in i and in population type.

Assumption (5.1) asks that the subsample sizes mi and ni diverge to infinity

in a uniform manner as m and n grow. This is a particularly mild condition; we
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do not expect a subsample to provide asymptotically reliable information about

the corresponding random function, Xi or Yi, unless it is large. The first part

of (5.2) asks that the bandwidths hXi and hY i are uniformly small. Again this

is a minimal condition, since bandwidths that converge to zero are necessary for

consistent estimation of Xi and Yi. Likewise, the second part of (5.2) is only a

little stronger than the assumption that the variances of the estimators of Xi and

Yi decrease uniformly to zero.

Assumptions (5.3) and (5.4) are conventional. The latter is tailored to the case

of random design, as too is (5.9) below; in the event of regularly sapced design,

both can be replaced by simpler conditions.

5.2. Conditions for Theorem 2. We shall need the following notation. Given C > 0

and r ∈ (1, 2], write Cr(C) for the class of differentiable functions, z, on I for

which: (a) ‖z′‖∞ ≤ C; (b) if 1 < r < 2, |z′(s)− z′(t)| ≤ C |s− t|r−1 for all s, t ∈ I;

and (c) if r = 2, z has two bounded derivatives and ‖z′′‖∞ ≤ C. Given d > 0,

put Wd = X + dX ′′, where X denotes a generic Xi, and let fWd(s) denote the

probability density of Wd(s).

The assumptions leading to Theorem 2 are the following, comprising A.2:

the kernel K is a symmetric, compactly-supported probability
density with two Hölder-continuous derivatives ;

(5.5)

ν ≍ min
1≤i≤m

mi ≍ max
1≤i≤m

mi as m→ ∞ ; (5.6)

for some 0 < η < 1 and all sufficiently large m, mη ≤ ν ≤ m1/η ; (5.7)

the common bandwidth, h = hXi, satisfies,

for some η > 0 , h ≍ ν−1/q where 3 < q <∞ ; (5.8)

the respective densities fi of the observation times Sij satisfy,

sup
1≤i<∞

sup
t∈I

|f ′′
i (t)| <∞ , inf

1≤i<∞
inf
t∈I

fi(t) > 0 ; (5.9)

the random function X has four bounded derivatives, with

E
(
|δ|s

)
<∞ , E

{
sup
t∈I

max
r=1,...,4

∣∣X(r)(t)
∣∣s

}
<∞ for each s > 0 ; (5.10)

sup
|d|≤c

sup
s∈I

∥∥fWd(s)

∥∥
∞
<∞ for some c > 0 ; (5.11)
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for 1 ≤ p ≤ 2 and c > 0, and for each C > 0,

P (Wd ≤ z + y) = P (Wd ≤ z) +

∫

I

y(s)P
{
Wd ≤ z

∣∣ Wd(s) = z(s)
}

× fWd(s){z(s)} ds+O
(
‖y‖p

∞

)
,

uniformly in z ∈ C2(C), in y ∈ Cp(C), and in d satisfying |d| ≤ c .

(5.12)

Conditions (5.5)–(5.11) are conventional and self-explanatory. Condition (5.12)

can be derived formally by taking the limit, as r → ∞, of more familiar formulae for

the probability P{W (si) ≤ z(si) for 1 ≤ i ≤ r}, where W = Wd. To obtain (5.12)

in detail, in the case p = 2 and under the assumption that W ′′ is well-defined and

continuous, we can first calculate the probabilities conditional on W ′′, and argue as

follows.

Note that W (t) = V0 + t V1 + u(t), where u(t) = t2
∫
0<s<1

W ′′(st) (1 − s) ds

and Vj = W (j)(0). Of course, u is held fixed if we condition on W ′′. Write Q for

probability measure conditional on W ′′, define v = z − u, and let A(v, y) denote

the set of pairs (v0, v1) such that v0 + t v1 ≤ v(t) + y(t) for all t ∈ I. Write

B1(v, y) [respectively, B2] for the set of (v0, v1) such that for some t, y(t) > 0 and

v(t) < v0 + t v1 ≤ v(t) + y(t) [y(t) < 0 and v(t) + y(t) < v0 + t v1 ≤ v(t)]. Define

D1(v, y) = A(v, y) ∩ B1(v, y) and D2(v, y) = A(v, 0) ∩ B2(v, y). Then,

Q(W ≤ z + y) −Q(W ≤ z)

= Q
{
(V0, V1) ∈ D1(v, y)

}
−Q

{
(V0, V1) ∈ D2(v, y)

}
. (5.13)

The regions D1(v, y) and D2(v, y) shrink to sets of measure zero, their probabil-

ities decreasing at rate O(‖y‖∞), as ‖y‖∞ → 0. In particular, both the probabilities

on the right-hand side of (5.13) converge to zero. The fact that the probabilities are

defined in terms of the vector (V0, V1) makes it possible to verify, working only in

terms of the bivariate distribution of (V0, V1) conditional on W ′′, the formula that

can be obtained formally by discrete approximation:

Q(W ≤ z + y) = Q(W ≤ z) +

∫

I

y(s)Q
{
W ≤ z

∣∣ W (s) = z(s)
}

× fW (s) | W ′′{z(s)} ds+O
(
‖y‖2

∞

)
.

Taking expectations in the distribution of W ′′, this can be used to derive (5.12)

for classes of stochastic processes X . Examples include polynomial functions of

multivariate Gaussian processes with sufficiently smooth sample paths.

5.3. Error reduction in more specialised cases. Writing W = Wd and letting

fW (s1),...,W (sk) denote the joint density ofW (s1), . . . ,W (sk), the expansion at (5.12)
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can sometimes (e.g. in the case of sufficiently smooth Gaussian processes) be taken

to greater length:

P (W ≤ z + y)

= P (W ≤ z) +

∫

I

y(s)P
{
W ≤ z

∣∣ W (s) = z(s)
}
fW (s){z(s)} ds

+ 1
2

∫ ∫

I2

y(s1) y(s2)P
{
W ≤ z

∣∣∣ W (s1) = z(s1),W (s2) = z(s2)
}

× fW (s1),W (s2){z(s1), z(s2)} ds1 ds2

+ 1
6

∫ ∫ ∫

I3

y(s1) y(s2) y(s3)P
{
W ≤ z

∣∣∣ W (s1) = z(s1),

W (s2) = z(s2),W (s3) = z(s3)
}

× fW (s1),W (s2),W (s3){z(s1), z(s2), z(s3)} ds1 ds2 ds3 + . . . , (5.14)

where, if the expansion were stopped after terms of kth power in y, the remainder

would be of order ‖y‖k+1
∞ . As in the proof of Theorem 2 we shall give in section 6.2,

let us replace y by a zero-mean stochastic process, ∆ say, that is independent of

W and for which (a) ∆(s1), ∆(s2) and ∆(s3) are independent if each pair (si, sj)

with i 6= j satisfies |si − sj | > C h, and (b) E{∆(s)2} = O{(νh)−1} uniformly in s.

(Here, C > 0 depends only on the support of the kernel, K.) Condition on ∆, then

develop the expansion at (5.14), then take expectations in the distribution of ∆.

After these steps, the absolute value of the term that is quadratic in y is seen

to be bounded by a constant multiple of

(νh)−1

∫

I

ds1

∫

s2 : |s2−s1|≤C h

fW (s1),W (s2){z(s1), z(s2)} ds2 , (5.15)

and higher-order terms may be dealt with similarly. Changing variable in (5.15)

from s2 to u = s2 − s1, and assuming the function z is sufficiently smooth and that

W is a sufficiently smooth Gaussian process, it may be proved that the quantity

in (5.15) is bounded above by a constant multiple of ν−1h−1/2. This enables the

upper bound at (3.7) to be improved to: O(νη−(2q−1)/2q) if q ≤ 9
2
, and O(νη−4/q)

if q > 9
2 . This shows the potential for smaller bandwidths than ν−1/5 to produce

lower coverage errors in the case of sufficiently regular processes, such as Gaussian

processes, but it does not offer an improved bound when h is taken of conventional

size, i.e. ν−1/5.

6. PROOFS OF MAIN PROPERTIES

6.1. Proof of Theorem 1. Define ∆Xi(z) = I(X̂i ≤ z)−I(Xi ≤ z), ∆Y i(z) = I(Ŷi ≤

z) − I(Yi ≤ z), ∆X = m−1
∑

i≤m ∆Xi and ∆Y = n−1
∑

i≤n ∆Y i, where indicator
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functions are interpreted as in section 2. It suffices to show that
∫
E{∆X(z) − E∆X(z)}2 µ(dz) = o

(
m−1

)
, (6.1)

∫
E{∆Y (z) −E∆Y (z)}2 µ(dz) = o

(
n−1

)
,

and it is adequate to prove (6.1). To this end, note that with Ii = I(Xi ≤ z) and

Îi = I(X̂i ≤ z) we have,

∫
E{∆X(z) −E∆X(z)}2 µ(dz) = m−2

m∑

i=1

∫
var{∆Xi(z)}µ(dz)

≤ m−2
m∑

i=1

∫
E

{
(Îi − Ii)

2
}
µ(dz) = m−2

m∑

i=1

∫
πi(z)µ(dz) , (6.2)

where πi(z) = P ( just one of “Xi ≤ z” and “X̂i ≤ z” is true ). Now, for each η > 0,

πi(z) ≤ P (‖X̂i −Xi‖∞ > η) + P (‖X − z‖∞ ≤ η) . (6.3)

Provided the bandwidths hXi satisfy (5.2) and (3.2), there exists a sequence η =

η(m) decreasing to zero, such that

max
1≤i≤m

P (‖X̂i −Xi‖∞ > η) → 0 (6.4)

uniformly in 1 ≤ i ≤ m. Since η → 0 and µ has no atoms, then
∫
P (‖X − z‖∞ ≤ η)µ(dz) → 0 . (6.5)

Combining (6.3)–(6.5) we deduce that

m∑

i=1

∫
πi(z)µ(dz) = o(m)

as m→ ∞. This result and (6.2) imply (6.1).

6.2. Proof of Theorem 2. Define κr =
∫
ur K(u) du and αir(t) = E{Air(t)}. Under

assumptions (5.5)–(5.9),

P

{
max

1≤i≤m
max

1≤r≤r0

sup
t∈I

|Air(t) − αir(t)| > (νh)η−1/2

}
= O

(
m−B

)
,

for each B, η > 0 and r0 ≥ 1. More simply, αir(t) = κr fi(t) +O(h2), uniformly in

i and t, if r is even, and αir(t) = O(h), uniformly in i and t, if r is odd. Hence,

for even r , P

{
max

1≤i≤m
sup
t∈I

|Air(t) − κr fi(t)| > (νh)η−1/2 +B1 h
2

}
= O

(
m−B

)
,

(6.6)
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for odd r , P

{
max

1≤i≤m
sup
t∈I

|Air(t)| > (νh)η−1/2 +B1 h

}
= O

(
m−B

)
, (6.7)

for each B, η > 0 and some B1 > 0.

Define

∆ir(t) =
1

mihXi

mi∑

j=1

δij

(
t− Sij

hXi

)r

K

(
t− Sij

hXi

)
,

∆i(t) =
Ai2(t) ∆i0(t) −Ai1(t) ∆i1(t)

Ai0(t)Ai2(t) −Ai1(t)2
.

By Taylor expansion of Xi,

X̂i(t) = Xi(t) + 1
2
h2X ′′

i (t)
Ai2(t)

2 −Ai1(t)Ai3(t)

Ai0(t)Ai2(t) −Ai1(t)2

+ 1
6
h3X ′′′

i (t)
Ai2(t)Ai3(t) −Ai1(t)Ai4(t)

Ai0(t)Ai2(t) −Ai1(t)2
+ ∆i(t) +Ri1(t) , (6.8)

where, for each B, η > 0,

P

{
max

1≤i≤m
sup
t∈I

|Ri1(t)| > h4−η

}
= O

(
m−B

)
(6.9)

for each B, η > 0, and we have employed (5.10) and Markov’s inequality to ob-

tain (6.9). Using (6.6) and (6.7) to simplify the ratios on the right-hand side of

(6.8), applying (6.9) to bound Ri1(t), and employing (5.10) and Markov’s inequal-

ity to bound supt∈I |X
(r)
i | for r = 2, 3, we deduce that for each η > 0,

X̂i(t) = Xi(t) + 1
2 κ2 h

2X ′′
i (t) + ∆i(t) +Ri2(t) , (6.10)

where, for each B, η > 0,

P

{
max

1≤i≤m
sup
t∈I

|Ri2(t)| > h4−η + h2 (ν h)η−1/2

}
= O

(
m−B

)
. (6.11)

Put ξ = ξ(m) = h4−η + h2 (ν h)η−1/2 and Qi = Xi + 1
2 κ2 h

2X ′′
i ; that is, Qi

equals the version of Wd that arises when d = 1
2
κ2 h

2 and X = Xi. Then, by (6.10)

and (6.11),

P
(
X̂i ≤ z

) {
≤ P (Qi + ∆i ≤ z + ξ) +O(m−B)
≥ P (Qi + ∆i ≤ z − ξ) +O(m−B) ,

(6.12)

for each B,C, η > 0, where the remainders O(m−B) are of that size uniformly in

functions z ∈ C2(C) and in 1 ≤ i ≤ m.

For the next step we need to “ridge” the quantity ∆i, so as to avoid aberrations

caused by its denominator, Di(t) = Ai0(t)Ai2(t) − Ai1(t)
2, being too close to zero

for some t. We may choose σ > 0 so small that the probability that the event Ei,
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that |Di(t)| > σ for all 1 ≤ i ≤ m and all t ∈ I, equals 1−O(m−B) for each B > 0;

call this result (R). Let Ii denote the indicator function of the event that Ei holds.

In view of (R), we may replace ∆i by ∆i Ii, in (6.12), without affecting the veracity

of that result:

P
(
X̂i ≤ z

) {
≤ P (Qi + ∆i Ii ≤ z + ξ) +O(m−B)
≥ P (Qi + ∆i Ii ≤ z − ξ) +O(m−B) ,

(6.13)

uniformly in z ∈ C2(C) and in 1 ≤ i ≤ m.

Assumption (5.8) implies that for each p ∈ (1, 2) satisfying p < (q − 1)/2, and

each B,C, η > 0, P{∆i ∈ Cr(C)} = 1−O(m−B) for all r > p sufficiently close to p.

Noting this property; applying (5.12) and (5.11), with (Wd, y) there replaced by

(Qi,∆i Ii) and with p < min{2, (q − 1)/2}; observing that ∆i Ii is independent of

Qi, so we may first condition on ∆i Ii and then take expectation in the distribution

of ∆i Ii; and noting that E(∆i Ii) = 0, so that, after expectations are taken, the

linear term in (5.12) vanishes; we deduce that, for either choice of the ± signs,

P (Qi + ∆i Ii ≤ z ± ξ) = P (Qi ≤ z ± ξ) +O
(
E‖∆i Ii‖

p
∞

)
, (6.14)

uniformly in z ∈ C2(C) and in 1 ≤ i ≤ m. Now, E‖∆i Ii‖
p
∞ = O{(νh)η−p/2}, for

each η > 0. Substituting these bounds into (6.14), and recalling that ξ = ξ(m) =

h4−η + h2 (ν h)η−1/2, we deduce that for each η > 0,

P (Qi + ∆i Ii ≤ z ± ξ) = P (Qi ≤ z ± ξ) +O
{
(νh)η−p/2 + h4−η

}
, (6.15)

uniformly in z ∈ C2(C) and in 1 ≤ i ≤ m.

Now apply (5.12) once more, again with Wd replaced by Qi but this time with

p ∈ (1, 2] and y ≡ ±ξ, obtaining,

P (Qi ≤ z ± ξ) = P (Qi ≤ z) +O(ξ) , (6.16)

uniformly in z ∈ C2(C) and in 1 ≤ i ≤ m. Combining (6.13)–(6.16) we deduce that,

uniformly in z ∈ C2(C) and in 1 ≤ i ≤ m,

P (X̂i ≤ z) = P (Qi ≤ z) +O
{
(νh)η−p/2 + h4−η

}
. (6.17)

If q > 5 in (5.8) then the arguments above apply with p = 2, and so (6.17)

implies: P (X̂i ≤ z) = P (Qi ≤ z) + O(νη−4/q) for each η > 0. If q ≤ 5 then the

arguments hold for each 1 < p < (q − 1)/2, and so (6.17) entails: P (X̂i ≤ z) =

P (Qi ≤ z) +O(νη−(q−1)2/4q) for each η > 0.
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Caption for Figure 1: Rejection probabilities for m = n = 15 (full curve), m =

n = 25 (dashed curve) and m = n = 50 (dotted curve). The thin curves correspond

to m1 = n1 = 20, the thick curves to m1 = n1 = 100. The null hypothesis holds for

a = 0.

Caption for Figure 2: Rejection probabilities for m = n = 15 (full curve), m =

n = 25 (dashed curve) and m = n = 50 (dotted curve). The thin curves are

obtained by using different bandwidths for each sample, the thick curves use the

same bandwidth. In all cases, m1 = 20 and n1 = 100. The null hypothesis holds for

a = 0.

Caption for Figure 3: Raw data for mean monthly temperatures at 35 Canadian

weather stations. The full curves correspond to data for Atlantic stations, dashed

curves for Pacific stations and dotted curves for Continental stations.
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