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1 Introduction

The goal of this paper is to propose and analyze models for lifetime data that may be left
or right censored. Typically, a lifetime T is left or right censored if, instead of observing
T we observe a finite nonnegative random variable Y , and a discrete random variable
with values 0, 1 or 2. By definition, when A = 0, Y = T, when A = 1, Y < T and, when
A = 2, Y > T. Models for left or right censored data were proposed by Turnbull (1974),
Samuelsen (1989) and Huang (1999). See also Gu and Zhang (1993), van der Laan and
Gill (1999), Kim (2003).

Assume that the sample consists of n independent copies of (Y,A) and let FT be the
distribution of the lifetime of interest T . Using the plug-in (or substitution) principle, the
nonparametric estimation of FT is straight as soon as FT can be expressed as an explicit
function of the distribution of (Y,A). The existence of such a function requires a precise
description of the censoring mechanism that is generally achieved by introducing ‘latent’
variables and by making assumptions on their distributions. In this paper, two latent
models allowing for explicit inversion formula, that is closed-form function relating FT to
the distribution of (Y,A), are proposed.

In some sense, our first latent model lies between the classical right-censorship model
and the current-status data model. It may be applied to the following framework. Con-
sider a study where T the age at onset for a disease is analyzed. The individuals are
examined only one time and they belong to one of the following categories: (i) evidence
of the disease is present and the age at onset is known (from medical records, interviews
with the patient or family members, ...); (ii) the disease is diagnosed but the age at onset
is unknown or the accuracy of the information about this is questionable; and (iii) the
disease is not diagnosed at the examination time. Let C denote the age of the individual
at the examination time. In the first case the exact failure time T (age at onset) is
observed, that is Y = T . In case (ii) the failure time T is left-censored by C and thus
Y = C, A = 2. Finally, the onset time T is right-censored by C for the individuals who
have not yet developed the disease; in this case Y = C, A = 1. If no observation as in
(ii) occurs, we are in the classical right-censorship framework, while if no uncensored ob-
servation is recorded we have current-status data. Our first latent model can be applied,
for instance, with the data sets analyzed by Turnbull and Weiss (1978) and Cupples et
alli (1991, Table 1).

The second latent model proposed is closely related to the first one. It lies between
the left-censorship model and the current-status data model. Consider the example of a
reliability experiment where the failure time of a type of device is analyzed. A sample of
devices is considered and a single inspection for each device in the sample is undertaken.
Some of them already failed without knowing when (left censored observations). To
increase the precision of the estimates, a proportion of the devices still working is selected
randomly and followed until failure (uncensored observations). For the remaining working
devices the failure time is right censored by the inspection time.

Let us point out that, without any model assumption, given a distribution for the
observed variables (Y,A) with Y ≥ 0 and A ∈ {0, 1, 2}, we can always apply our two
inversion formulae. In this way we build two pseudo-true distribution functions of the
lifetime of interest which are functionals of the observed distribution. If the experiment
under observation is compatible with the hypothesis of one of our latent models, the
true FT can be exactly recovered from the observed distribution. Otherwise, we can only
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approximate the true lifetime distribution.
The paper is organized as follows. Section 2 introduces our two latent models through

the equations relating the distribution of the observations to those of the latent variables.
Solving these equations for FT we deduce the inversion formulae. The product-limit
estimators are obtained by applying the inversion formulae to the empirical distribution.
Section 2 is ended with some remarks and comments on related models. In particular, it is
shown that our first (resp. second) latent model can be extended to the case where T is a
failure time in the presence of competing (resp. complementary) failure causes. Section 3
contains the asymptotic results for the first latent model (similar arguments apply for the
second model). We prove strong uniform convergence for the product-limit estimator on
the whole range of the observations. Our proof extends and simplifies the results of Stute
and Wang (1993) and Gill (1994) provided in the case of the Kaplan-Meier estimator.
Next, the asymptotic normality of our product-limit estimator is obtained. The variance
of the limit Gaussian process being complicated, a bootstrap procedure for which the
asymptotic validity is a direct consequence of the delta-method is proposed. In section
4 our first model is applied to the age of the first use of marijuana using California high
school students data considered by Turnbull and Weiss (1978). The appendix contains
some technical proofs.

2 The latent models

2.1 Model 1

The survival time of interest is T (e.g., the age at onset). Let C be a censoring time (e.g.,
the age of the individual at the examination time) and ∆ be a Bernoulli random variable.
Assume that the latent variables T, C and ∆ are independent. The observations are
independent copies of the variables (Y,A), with Y ≥ 0 and A ∈ {0, 1, 2}. These variables
are defined as follows:





Y = T, A = 0 if 0 ≤ T ≤ C and ∆ = 1;
Y = C, A = 1 if 0 ≤ C < T ;
Y = C, A = 2 if 0 ≤ T ≤ C and ∆ = 0.

We can also write

Y = min(T, C) + (1−∆) max(C − T, 0) = C + ∆ min(T − C, 0)

and A = 2(1−∆)1{T≤C}+ 1{C<T}, where 1A denotes the indicator function of the set A.
With this censoring mechanism the lifetime T is observed, right censored or left censored.
In view of the definitions of Y and A, note that if ∆ is constant and equal to one (resp.
zero), we obtain right censored (resp. current status ) data. See, e.g., Huang and Wellner
(1997) for a review on estimation with current status data.

Let FT and FC denote the distributions of T and C, respectively. Let p = P (∆ = 1) .
Define the observed subdistributions of Y as

Hk (B) = P (Y ∈ B, A = k) , k = 0, 1, 2, (2.1)

for any B Borel subset of [0,∞]. As usually in survival analysis, the censoring mecha-
nism defines a map Φ between the distributions of the latent variables and the observed
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distributions. For the censoring mechanism we consider, the relationship (H0, H1, H2) =
Φ (FT , FC , p) between the subdistributions of Y and the distributions of the latent vari-
ables T , C and ∆ is the following:





H0(dt) = p FC ([t,∞])FT (dt)
H1(dt) = FT ((t,∞])FC(dt)
H2(dt) = (1− p)FT ([0, t])FC(dt)

. (2.2)

Remark that when p = 1 (resp. p = 0) the equations (2.2) boil down to the equations of
the classical independent right-censoring (resp. current status) model.

By plug-in applied with the empirical distribution, the nonparametric estimation of
the distribution of T is straight as soon as the map Φ is invertible and FT can be written as
an explicit function of the observed subdistributions Hk, k = 0, 1, 2. The model considered
allows us an explicit inversion formula for FT . In order to derive this inversion formula,
integrate the first and the second equation in (2.2) on [t,∞] and deduce

H0([t,∞]) + pH1([t,∞]) = pFT ([t,∞])FC ([t,∞]) . (2.3)

For t = 0, it follows that

p =
H0([0,∞])

1−H1([0,∞])
=

H0([0,∞])

H0([0,∞]) +H2([0,∞])
. (2.4)

Recall that the hazard measure associated to a distribution F is Λ(dt) = F (dt)/F ([t,∞]).
In our case, use (2.2)-(2.3) to deduce that the hazard function corresponding to FT can
be written as

ΛT (dt) =
H0(dt)

H0([t,∞]) + pH1([t,∞])
. (2.5)

Finally, the distribution FT can be expressed as

FT ((t,∞]) =

[0,t]

(1− ΛT (ds)), (2.6)

where is the product-integral (e.g., Gill and Johansen, 1990). Note that there is no
explicit formula for FT if p = 0 in equations (2.2), that is with current status data.

The inversion formula above applies only for t ∈ I = {t : H0([t,∞])+pH1([t,∞]) > 0}.
Obviously, we can have no information from data about FT ((t,∞]) for t outside the
interval I, unless FT (I) = 1 in which case there is nothing else to know. If FT (I) < 1,
we make FT a distribution on [0,∞] by considering that FT has a supplementary mass
1− FT (I) at infinity.

Given the explicit relationship between the distribution of T and the observed subdis-
tributions, to obtain the product-limit estimator of FT , we simply replace Hk, k = 0, 1, 2
by their empirical counterparts. Consider a sample {(Yi, Ai) : 1 ≤ i ≤ n} and let
Z1 ≤ ... ≤ ZJ be the distinct values in increasing order of Yi. For any j = 1, ..., J and
k = 0, 1, 2, define

Dkj =
∑

1≤i≤n
1{Yi=Zj , Ai=k} and Nkj =

∑

1≤i≤n
1{Yi≥Zj , Ai=k} =

∑

j≤l≤J
Dkl.
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In view of (2.4), the estimator of p is

p̂ =
N 01

N 01 +N21

,

while the estimator of the hazard measure is

Λ̂T ([0, t]) =
∑

j:Zj≤t

D0j

N0j + p̂ N 1j

.

Finally, the product-limit estimator of FT is a discrete (possibly sub)distribution F̂T with
the mass concentrated at the points Z1 ≤ ... ≤ ZJ and such that

F̂T ((Zj,∞]) =
∏

1≤l≤j
{1− D0l

N 0l + p̂ N 1l

}, 1 ≤ j ≤ J. (2.7)

When N21 = 0, F̂T is the Kaplan-Meier estimator for right-censored observations.

2.2 Model 2

As in Model 1, assume that T, C and ∆ are independent. The observations are indepen-
dent copies of the variables (Y,A), with Y ≥ 0 and A ∈ {0, 1, 2} where





Y = T, A = 0 if 0 ≤ C ≤ T and ∆ = 1;
Y = C, A = 1 if 0 ≤ C ≤ T and ∆ = 0;
Y = C, A = 2 if 0 ≤ T < C.

We can also write Y = max(T, C) + (1−∆) min(C − T, 0) = C + ∆ max(T −C, 0). The
equations of this model are





H0(dt) = p FC ([0, t])FT (dt)
H1(dt) = (1− p)FT ([t,∞])FC(dt)
H2(dt) = FT ([0, t))FC(dt)

. (2.8)

Remark that when p = 1 (resp. p = 0) the equations (2.8) boil down to the equations
of the classical independent left-censoring (resp. current status) model. This model also
allows for an explicit inversion formula for FT . By integration in the first and the third
equation in (2.8), H0([0, t]) + pH2([0, t]) = pFT ([0, t])FC([0, t]). Deduce

p =
H0([0,∞])

1−H2([0,∞])
.

Recall that given a distribution F, the associated reverse hazard measure is M(dt) =
F (dt)/F ([0, t]). By equations (2.8) deduce that the reverse hazard function MT associated
to FT can be written as

MT (dt) =
H0(dt)

H0([0, t]) + pH2([0, t])
.
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Finally, the distribution FT can be expressed as

FT ([0, t]) =

(t,∞]

(1−MT (ds)).

The inversion formula applies on the interval {t : H0([0, t]) + pH2([0, t]) > 0}. Apply-
ing the inversion formula with the empirical subdistributions, we get the product-limit
estimator of FT . The details are omitted.

Note that if T̃ = h(T ) and C̃ = h(C), with h ≥ 0 a decreasing transformation, then T̃ ,

C̃ and ∆ are the variables of Model 1 applied to the left or right censored lifetime h(Y ).
In other words, Model 2 is equivalent to Model 1, up to a time reversal transformation.

2.3 Extensions and related models

Model 1 can be easily extended in the following way: consider that T = min (Ta, Tb) ,
with Ta (resp. Tb) the failure time due to cause a (resp. b). Assume that Ta and Tb are
independent and independent of C and ∆. For simplicity, we only consider two failure
causes, the extension to k > 2 competing failure causes being straight. Assume that if
T > C, one only observes C and one knows that T is greater. When T ≤ C there are two
cases: either C is observed and one only knows that the failure time T is less or equal to
C, or T is observed and in this case one knows if the failure cause is a or b. The equations
of the extended model are





H0a(dt) = p FC ([t,∞])FTb ([t,∞])FTa(dt)
H0b(dt) = p FC ([t,∞])FTa ((t,∞])FTb(dt)
H1(dt) = FT ((t,∞])FC(dt)
H2(dt) = (1− p)FT ([0, t])FC(dt)

,

where H0a (resp. H0b) is the subdistribution of the uncensored observations for which
the failure cause is a (resp. b). If H0 denotes the subdistribution of the uncensored
observations, we have H0(dt) = p FC ([t,∞])FT (dt). Deduce that p can be expressed as
in (2.4). Moreover, (2.3) holds. Consequently, if ΛTa(dt) = FTa(dt)/FTa ([t,∞]) is the
hazard measure for Ta, we obtain

ΛTa(dt) =
p FC ([t,∞])FTb ([t,∞])FTa(dt)

p FC ([t,∞])FT ([t,∞])
=

H0a(dt)

H0([t,∞]) + pH1([t,∞])
(2.9)

from which we deduce the expression of FTa. Model 2 can be extended in a similar way by
considering T = max (Ta, Tb) , with Ta and Tb the independent failure times corresponding
to the complementary causes a and b, respectively.

Let us end this section with some comments on related models. Huang (1999) in-
troduced a model for the so-called partly interval-censored data, Case 1; see also Kim
(2003). In such data, for some subjects, the exact failure time of interest T is observed.
For the remaining subjects, only the information on their current status at the examina-
tion time is available. Huang (1999) considered the nonparametric maximum likelihood
estimator (NPMLE) of FT . Unfortunately, NPMLE does not have an explicit form and
therefore Huang needs strong assumptions for deriving its asymptotic properties and a
numerical algorithm for the applications. Let us point out that, on contrary to our Model
1 (resp. Model 2), in Huang’s model one may observe exact failure times even if failure
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occurs after (resp. before) the examination time. Moreover, in Huang’s model one may
still obtain a

√
n−consistent estimator of the distribution FT if one simply considers the

empirical distribution of the uncensored lifetimes. This is no longer true in our models.
Perhaps, the most popular model for left or right-censored data is the one introduced

by Turnbull (1974); see also Gu and Zhang (1993). In Turnbull’s model there are three
latent lifetimes L (left-censoring), T (lifetime of interest) and R (right-censoring) with
L ≤ R. The observed variables are Y = max(L,min(T,R)) = min(max(L, T ), R) and A
defines as follows: A = 0 if L < T ≤ R; A = 1 if R < T ; and A = 2 if T ≤ L. The
equations of this model are





H0(dt) = {FR([t,∞])− FL([t,∞])} FT (dt)
H1(dt) = FT ((t,∞]) FR(dt)
H2(dt) = FT ([0, t]) FL(dt)

,

where Hk, k = 0, 1, 2 are defined as in (2.1) and FT , FL and FR are the distributions
of T , L and R, respectively. The NPMLE of the distribution of the failure time T is
not explicit but it can be computed, for instance, by iterations based on the so-called
self-consistency equation. Note that imposing FC(dt) = (1 − p)−1FL(dt) = FR(dt), one
recovers the equations of Model 1. However, for the applications we have in mind, there is
no natural interpretation for such a constraint in Turnbull’s model. Moreover, we derive
a product-limit estimator for our Model 1. Finally, the asymptotic results below (strong
consistency, asymptotic normality and bootstrap consistency) are much simpler and they
are obtained under weaker conditions than in Turnbull’s model (see Gu and Zhang, 1993
and Wellner and Zhan, 1996).

3 Asymptotic results

In this section the strong uniform convergence and the asymptotic normality for the
estimator of the distribution FT in Model 1 are derived. Moreover, we propose a bootstrap
procedure that can be used to build confidence intervals for FT . As in the previous
sections, the distributions FT and FC need not be continuous. For simpler notation,
hereafter, the subscript T is suppressed when there is no possible confusion. We write F̂
(resp. F , Λ̂ and Λ) instead of F̂T (resp. FT , Λ̂T and ΛT ).

3.1 Strong uniform convergence

Let Hnk be the empirical counterparts of the subdistributions Hk, k = 0, 1, 2, that is

Hnk([0, t]) = n−1

n∑

i=1

1{Yi≤t, Ai=k}, k = 0, 1, 2.

It is known from empirical process theory that supt≥0 |Hnk([0, t])−Hk([0, t])| → 0, almost

surely. We want to prove the strong uniform convergence of the distribution F̂ , that is

sup
t∈I

∣∣∣F̂ ([0, t])− F ([0, t])
∣∣∣→ 0, as n→∞, almost surely,

where I = {t : H0([t,∞]) + pH1([t,∞]) > 0}. First, the almost sure convergence of the
hazard function is obtained.
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Theorem 3.1 Assume that p ∈ (0, 1] and let t∗ = sup I. For any σ ∈ I,

sup
0≤t≤σ

∣∣∣Λ̂ ([0, t])− Λ ([0, t])
∣∣∣→ 0, as n→∞, almost surely.

Moreover, if t∗ /∈ I and Λ ([0, t∗)) <∞, then Λ̂ ([0, t∗))→ Λ ([0, t∗)) , almost surely.

To prove this theorem, first we obtain the result when p replaces p̂ in the definition
of Λ̂. In this case the functionals of the hazard function are reverse supermartingales in
n, as it is shown in the next lemma which extends a statement of Gill(1994).

Lemma 3.2 Let p ∈ (0, 1] and f ≥ 0 be a Borel-measurable function. Let

Λn,p(f) =

∫

I

f(t)Hn0(dt)

Hn0([t,∞]) + pHn1([t,∞])
.

Define the σ−fields

Fn = σ(Hn0, Hn1, Hn2, ) and Bn =
∨

n≤m<∞
Fm.

Then, for all n,
E[Λn,p(f) | Bn+1] ≤ Λn+1,p(f),

that is Λn,p(f), n ≥ 1 is a positive reverse supermartingale.

Proof of Lemma 3.2. For simplicity, in this proof, let us write Λn instead of Λn,p.
Define Nn(t) = nHn0([t,∞]) + pnHn1([t,∞]). Then we can write

Λn(f) =
∑

1≤i≤n
f(Yi)1{Ai=0}Nn(Yi)

−1.

Next, notice that

Bn+1 = Fn+1 ∨
∨

n+2≤m<∞
σ(Ym, Am)

and therefore, by the i.i.d. property of the sample and elementary properties of the
conditional independence (see, e.g., Florens, Mouchart and Rolin, 1990), we have

E[Λn(f) | Bn+1] = nE[f(Y1)1{A1=0}Nn(Y1)−1 | Hn+1,0, Hn+1,1, Hn+1,2].

The σ−field generated by Hn+1,0, Hn+1,1 and Hn+1,2 is the sub−σ−field of permutable
events in the σ−field generated by {(Yi, Ai) : 1 ≤ i ≤ n + 1}. Hence

E[Λn(f) | Bn+1] =
n

(n+ 1)!

∑

τ∈Pn+1

f(Yτ(1))1{Aτ(1)=0}N
τ
n+1(Yτ(1))

−1,

where Pn+1 is the set of permutations of n+ 1 elements and

N τ
n+1(Yτ(1)) = Nn+1(Yτ(1))− 1{Yτ(n+1)≥Yτ(1), Aτ(n+1)=0} − p1{Yτ(n+1)≥Yτ(1), Aτ(n+1)=1}.
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(By definition, 0/0 = 0.) There are (n − 1)! permutations such that τ(1) = i and
τ(n + 1) = j and therefore,

E[Λn(f) | Bn+1] =
1

n+ 1

∑

1≤i≤n+1

f(Yi)1{Ai=0} (3.1)

×
∑

1≤j 6=i≤n+1

[
Nn+1(Yi)− 1{Yj≥Yi, Aj=0} − p1{Yj≥Yi, Aj=1}

]−1
.

Now,
∑

1≤j 6=i≤n+1

[
Nn+1(Yi)− 1{Yj≥Yi, Aj=0} − p1{Yj≥Yi, Aj=1}

]−1

=
∑

1≤j 6=i≤n+1

[
1{Yj<Yi} + 1{Yj≥Yi,Aj=2}

Nn+1(Yi)
+

1{Yj≥Yi,Aj=0}
Nn+1(Yi)− 1

+
1{Yj≥Yi,Aj=1}
Nn+1(Yi)− p

]

=
n+ 1

Nn+1(Yi)
− Ri,

where

Ri =
1

Nn+1(Yi)

+
∑

1≤j 6=i≤n+1

[
1{Yj≥Yi,Aj=0} + 1{Yj≥Yi,Aj=1}

Nn+1(Yi)
− 1{Yj≥Yi,Aj=0}
Nn+1(Yi)− 1

− 1{Yj≥Yi,Aj=1}
Nn+1(Yi)− p

]
.

Use the inequality
a + b+ 1

a+ 1 + pb
≥ a

a + pb
+

b

a+ 1 + pb− p
with a =

∑
j 6=i 1{Yj≥Yi,Aj=0} and b =

∑
j 6=i 1{Yj≥Yi,Aj=1} and deduce Ri ≥ 0. (Notice that

Nn+1(Yi) = a + 1 + bp because the observations Yi involved in equation (3.1) are such
that Ai = 0.) Therefore,

E[Λn(f) | Bn+1] ≤
∑

1≤i≤n+1

f(Yi)1{Ai=0}Nn+1(Yi)
−1 = Λn+1(f),

that is Λn(f), n ≥ 1 is a reverse supermartingale.

Proof of Theorem 3.1. The strong uniform convergence of Λ̂([0, t]) when t ∈
[0, τ ] ⊂ I can be obtained by delta-method (cf. Gill (1989, 1994); see also the proof
of Theorem 3.6 below) from the almost sure uniform convergence of Hnk([0, t]), k =
0, 1, 2. For the last part of the theorem, denote with H0 (t−) and H1 (t−) the quantities
H0([t,∞]) and H1([t,∞]), respectively. Let Hn0 (t−) and Hn1 (t−) be the empirical
counterparts of H0 (t−) and H1 (t−), respectively. Fix some τ < t∗ and write

∣∣∣Λ̂((τ, t∗))− Λ((τ, t∗))
∣∣∣ ≤

∣∣∣∣
∫

(τ,t∗)

Hn0(dt)

(Hn0 + p̂ Hn1)(t−)
−
∫

(τ,t∗)

Hn0(dt)

(Hn0 + pHn1)(t−)

∣∣∣∣

+

∣∣∣∣
∫

(τ,t∗)

Hn0(dt)

(Hn0 + pHn1)(t−)
−
∫

(τ,t∗)

H0(dt)

(H0 + pH1) (t−)

∣∣∣∣
= : A1 + A2.

9



By little algebra,

A1 ≤
|p̂− p|
p̂

∫

(τ,t∗)

Hn0(dt)

Hn0(t−) + pHn1(t−)
=
|p̂− p|
p̂

Λn,p((τ, t∗)),

Since p̂ → p, almost surely, we obtain A1 → 0, almost surely, given that Λn,p((τ, t∗))
converges almost surely to a finite constant. Use Lemma 3.2 with f = 1(τ,t∗) to deduce
that Λn,p((τ, t∗)) is a reverse martingale. Now, by Doob’s supermartingale convergence
theorem, as soon as supnE[Λn,p((τ, t∗))] is finite, the functional Λn,p((τ, t∗)) converges
almost surely to some integrable limit. It is not difficult to see that the limit is in the
σ−field of asymptotic permutable events and is therefore a constant by the Hewitt-Savage
0-1 law. The constant is equal to supnE[Λn,p((τ, t∗))] and thus Λn,p((τ, t∗)) converges
almost surely and in expectation to this quantity. Consequently, to obtain A1 → 0, almost
surely, it remains to bound the sequence E[Λn,p((τ, t∗))], n ≥ 1. Note that Λn,p((τ, t∗)) ≤
p−1Λn,1((τ, t∗)). It can be shown (see Lemma A.1 in the appendix) that

E (Λn,1((τ, t∗))) =

∫

(τ,t∗)
P
{
Hn0 (u−) +Hn1 (u−) > 0

}
Λ1 (du) < Λ1((τ, t∗)),

where Λ1 (du) =
{
H0 (u−) +H1 (u−)

}−1
H0 (du) . Since Λ1 (du) ≤ Λ (du) , deduce that,

for any τ, supnE[Λn,p((τ, t∗))] ≤ p−1Λ ([0, t∗)) < ∞. Hence, A1 → 0, almost surely,
uniformly in τ . Concerning A2, note that A2 ≤ Λn,p((τ, t∗)) + Λ((τ, t∗)) and Λn,p((τ, t∗))
converges to a constant smaller than p−1Λ1((τ, t∗)), almost surely. Since Λ1((τ, t∗)) ↓ 0

as τ ↑ t∗, deduce that Λ̂ ([0, t∗))→ Λ ([0, t∗)) , almost surely.

The strong uniform convergence of the distribution F̂ follows without any additional
assumption.

Theorem 3.3 Assume that p ∈ (0, 1]. Then

sup
t∈I

∣∣∣F̂ ([0, t])− F ([0, t])
∣∣∣→ 0, as n→∞, almost surely.

Proof. ¿From the first part of Theorem 3.1 and using delta-method, for any τ ∈ I,

sup
t∈[0,τ ]

∣∣∣F̂ ([0, t])− F ([0, t])
∣∣∣→ 0, as n→∞, almost surely. (3.2)

Recall that t∗ = sup I. To complete the proof, follow Gill (1994) and distinguish three
cases: a) I = [0, t∗] (hence, t∗ <∞); b) I = [0, t∗) and F ([t∗,∞]) = 0; and c) I = [0, t∗)
and F ([t∗,∞]) > 0. In case a) there nothing more to prove. In case b),

sup
t∈I

∣∣∣F̂ ([0, t])− F ([0, t])
∣∣∣ ≤ F ((τ,∞]) + sup

t∈[0,τ ]

∣∣∣F̂ ([0, t])− F ([0, t])
∣∣∣ .

Since F ((τ,∞]) ↓ 0 as τ ↑ t∗, we deduce the strong uniform convergence F̂ in case b).
Finally, in case c)

sup
t∈I

∣∣∣F̂ ([0, t])− F ([0, t])
∣∣∣ ≤ F̂ ((τ, t∗)) + F ((τ, t∗)) + sup

t∈[0,τ ]

∣∣∣F̂ ([0, t])− F ([0, t])
∣∣∣ .
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Since F ((τ, t∗)) → 0 as τ ↑ t∗, it remains to bound F̂ ((τ, t∗)) when F ([t∗,∞]) > 0.

By definition, Λ (dt) = F (dt) /F ([t,∞]) and Λ̂ (dt) = F̂ (dt) /F̂ ([t,∞]) . Deduce that
Λ ([0, t∗)) <∞ and Λ ((τ, t∗)) ↓ 0 as τ ↑ t∗. On the other hand, deduce that the measure

Λ̂ (dt) is greater than the measure F̂ (dt) . We have

sup
t∈I

∣∣∣F̂ ([0, t])− F ([0, t])
∣∣∣ ≤ Λ̂((τ, t∗)) + F ((τ, t∗)) + sup

t∈[0,τ ]

∣∣∣F̂ ([0, t])− F ([0, t])
∣∣∣ .

Use Lemma 3.2 and deduce that, for any τ ∈ I, the left-hand side in the last display
converges to Λ((τ, t∗)) + F ((τ, t∗)) , almost surely. Since Λ((τ, t∗)) + F ((τ, t∗)) ↓ 0 as
τ ↑ t∗, the proof is complete.

Remark 1. The proofs of Lemma 3.2 and Theorem 3.1 apply also to the extension
of Model 1 considered in subsection 2.3. Deduce the strong uniform convergence on I of
the nonparametric estimator of the distribution FTa .

Remark 2. With p = 1 one recovers the strong uniform convergence result for the
Kaplan-Meier estimator obtained by Stute and Wang (1993); see also Gill (1994). Our
alternative proof is simpler, especially the arguments used for Lemma 3.2.

3.2 Asymptotic normality

Let us study the weak convergence of the process
√
n(F̂−F ) where F̂ is the product-limit

estimator of Model 1. In this case, Λ̂ does no longer have a martingale structure (in t)
as in the case of the Nelson-Aalen estimator, that is when p = 1. However, a continuous
time submartingale property for Λn,p defined in Lemma 3.2 can be obtained. (Recall that

Λn,p is defined as Λ̂ but with p̂ replaced by p.) This suffices us to extend the techniques of
Gill (1983) and to use them in combination with the functional delta-method in order to

establish the weak convergence of
√
n(F̂−F ) to a Gaussian process. Weak convergence is

denoted by and it is in the sense considered by Pollard (1984), that is D[a, b] the space
of càdlàg functions on [a, b] is endowed with the supremum norm and the ball σ−field.

Let us introduce the right-continuous filtration

Gt =

n∨

i=1

2∨

k=0

σ
(
1{Ai=k, Yi≤s}; 0 ≤ s ≤ t

)
, 0 ≤ t ≤ ∞, (3.3)

on the probability space (Ω,F , P ) where the random variables are defined. Consider

N(t) =
n∑

i=1

1{Yi≤t,Ai=0}, t ≥ 0,

a counting process adapted to the filtration (Gt). The compensator of N is defined by

A(dt) = E[N(dt) | Gt−] ,

see, e.g., Fleming and Harrington (1991), chapter 1. Simple computations give

A(dt) = Y (t−)
P (A = 0, Y ∈ dt)

P (Y ≥ t)
,

where Y (t−) =
∑n

i=1 1{Yi≥t}. This together with standard arguments give us:

11



Lemma 3.4 Let H(t−) = P (Y ≥ t), t ≥ 0. The stochastic process M defined by

M(t) = N(t)−
∫

[0,t]

Y (s−)

H(s−)
H0(ds)

is a squared integrable, zero-mean Gt-martingale on [0,∞]. The associated predictable
quadratic variation process is

〈M〉(t) =

∫

[0,t]

(
1− ∆H0(s)

H(s−)

)
Y (s−)

H(s−)
H0(ds),

where ∆H0(s) = H0({s}).

Recall that Hk(t−) = Hk([t,∞]), k = 0, 1, 2. Define the hazard function

Λ∗p([0, t]) =

∫

[0,t]

1{Y (s−)>0}{1− [H2(s−)/H(s−)]Y (s−)}2

H0(s−) + pH1(s−)
H0(ds), t ≥ 0.

Note that Λ∗p(dt) = 0 when t > Ymax, where Ymax = maxi Yi. The proof of the following
lemma is given in the appendix.

Lemma 3.5 Consider the filtration (Gt) defined in (3.3). Let X(t), t ≥ 0 be a nonnega-
tive, bounded, Gt-predictable process. Then, the process

W (t) =

∫

[0,t]

X(s)
(
Λn,p(ds)− Λ∗p(ds)

)
, t ≥ 0,

is a Gt-submartingale and E [W (t)] ≥ 0.

Define the stochastic process

Zp(t) =
√
n
Fn,p([0, t])− F ∗p ([0, t])

F ∗p ((t,∞])
, t ≥ 0, (3.4)

where Fn,p (resp. F ∗p ) is the distribution corresponding to Λn,p (resp. Λ∗p). It is well-known
that the process Zp is a (squared integrable) martingale on [0, τ ], for any τ < t∗ = sup I,
provided that p = 1 (see Gill, 1983). When p ∈ (0, 1), the process Zp is a submartingale
on [0, τ ], ∀τ < t∗. This is implied by the identity

Fn,p([0, t])− F ∗p ([0, t])

F ∗p ((t,∞])
=

∫

[0,t]

Fn,p([s,∞])

F ∗p ((s,∞])

(
Λn,p(ds)− Λ∗p(ds)

)

(which is a direct consequence of Duhamel’s equation; see Gill, 1994) and Lemma 3.5.

To prove the asymptotic normality of F̂ , notice that, by empirical central limit theo-
rem (e.g., van de Vaart and Wellner, 1996),

√
n
{(
H0n, H1n, p̂

)
−
(
H0, H1, p

)}
 
(
G0,G1, N

)
(3.5)

12



in (D [0,∞])2 × R, where Hkn is the càdlàg process Hnk (t) = Hnk ((t,∞]), k = 0, 1, 2.
The process

(
G0,G1

)
is a tight, zero mean Gaussian process and, for any t, s ≥ 0, the

vector
(
G0 (t) ,G1 (t) , N

)
has a zero-mean multivariate normal distribution. Moreover,

E
{
G0 (t)G0 (s)

}
= H0 (t ∨ s)−H0 (t)H0 (s) , (3.6)

E
{
G0 (t)G1 (s)

}
= −H0 (t)H1 (s) , E

{
G1 (t)G1 (s)

}
= H1 (t ∨ s)−H1 (t)H1 (s)

and

E
{
G0 (t)N

}
=
H0 (t) (1− p)
H02 ([0,∞])

, E
{
G1 (t)N

}
= 0, E

{
N2
}

=
p (1− p)

H02 ([0,∞])
,

where H02 = H0 +H2 and t ∨ s = max(t, s).

Theorem 3.6 Assume that p ∈ (0, 1] and define U(t) =
√
n(F̂ ([0, t])− F ([0, t])), t ≥ 0.

a) Let τ be a point in I. Then, U  G in D[0, τ ], where G is the Gaussian process

G (t) = −F ((t,∞])

{∫

[0,t]

dG0 (s)

H0 (s) + pH1 (s)
+

∫

[0,t]

G2(s−)

H0 (s−) + pH1 (s−)
dΛ (s)

}
,

and G2 = G0 +pG1 +N H1 with G0 and G1 the limit processes in (3.5). The first integral
is defined by integration by parts.

b) If t∗ 6∈ I, but ∫

[0,t∗)

H0(dt)

{H0(t−) + pH1(t−)}2
<∞, (3.7)

then G can be extended to a Gaussian process on [0, t∗] and U  G in D[0, t∗].

The proof of the weak convergence is postponed to the appendix. Note that when
t∗ 6∈ I, condition (3.7) is equivalent to

FT ([t∗,∞]) > 0 and

∫

[0,t∗)

FT (dt)

FC([t,∞])
<∞. (3.8)

See Chen and Lo (1997, section 1) for a discussion on similar conditions in the case of
the Kaplan-Meier estimator. Whether the weak convergence still holds when p < 1 and
only the second part of (3.8) is satisfied remains an open question.

3.3 Bootstrapping the product-limit estimator

Theorem 3.6 may be used to obtain confidence intervals and confidence bands for F.
However, the law of the process G(t)/F ((t,∞]) being complicated, one may prefer a
bootstrap method in order to avoid handling this process in practical applications. Here,
a bootstrap sample is obtained by simple random sample with replacement from the
set of observations. Let H∗k , k = 0, 1, 2 denote the bootstrap versions of the observed

subdistributions. Apply equations (2.4) to (2.6) to obtain the bootstrap estimator F̂ ∗.
The following theorem state that the bootstrap works almost surely for our product-limit
estimator on any interval [0, τ ] such that H0([τ,∞]) + pH1([τ,∞]) > 0. This result, for
which the proof is skipped, is a simple corollary of Theorem 3.9.13 of van der Vaart
and Wellner (1996) (see also Theorem 4 of Gill, 1989) and it is based on the uniform
Hadamard differentiability of the maps involved in the inversion formula of Model 1.
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Theorem 3.7 Let τ ∈ I and let G̃(t) be the limit of
√
n{F̂ ([0, t])− F ([0, t])}/F ((t,∞])

in D[0, τ ], as obtained from Theorem 3.6. Then, the process
√
n{F̂ ∗([0, t])− F̂ ([0, t])}/F̂ ((t,∞])

converges to G̃ in D[0, τ ], almost surely.

Using this result and the uniform convergence of F̂ to F , one can derive pointwise
confidence intervals and confidence bands for F . For instance, a bootstrap (1− α)−level
confidence interval for F ([0, t]) can be defined as

[
F̂ ([0, t])− q∗1−α/2 (t)n−1/2F̂ ((t,∞]) , F̂ ([0, t])− q∗α/2 (t)n−1/2F̂ ((t,∞])

]
,

where q∗α (t) is the bootstrap approximation of the α−quantile of the distribution of√
n{F̂ ([0, t])− F ([0, t])}/F ((t,∞]) .

4 Applications

Let us apply our first model to the California high school students data presented in
Table 1. The data is part of a study conducted at Stanford-Palo Alto Peer Counselling
Program; see Hamburg et al. (1975). In this study, 191 California high schools boys were
asked ”When did you first use marijuana?” The answers were the exact ages, ”I have
used it but I can not recall just when the first time was” and ”I never used”. The latent
variable T is the age at the first use of marijuana.

Table 1. First use of marijuana: Zj are the distinct observed values of the lifetimes Yi and

Dkj =
∑
i 1{Yi=Zj , Ai=k} , k = 0, 1, 2.

Zj 10 11 12 13 14 15 16 17 18 > 18
D0j (uncensored) 4 12 19 24 20 13 3 1 0 4
D1j (right-censored) 0 0 2 15 24 18 14 6 0 0
D2j (left-censored) 0 0 0 1 2 3 2 3 1 0

Turnbull and Weiss (1978) (see also and Klein and Moeschberger, 1997, chapter 5)
analyzed this sample using the doubly censorship model of Turnbull (1974). However,
there is no natural interpretation for two censoring times, that is the left and right-
censoring lifetimes L and R, with this data set. On contrary, Model 1 can be easily
interpreted as follows: ∆ = 1 if the student recalls the value of T and ∆ = 0 otherwise;
the variable C is the age of the student at the study time. Condition FT ([t∗,∞]) > 0,
see equation (3.7), means that some high schools boys will never use marijuana.

Table 2. Survival function estimates for the first use of marijuana.

Zj F̂T ((Zj ,∞]) F TWn ((Zj ,∞]) FKMn ((Zj ,∞])
10 0.977 0.977 0.978
11 0.906 0.906 0.911
12 0.795 0.794 0.804
13 0.652 0.651 0.669
14 0.517 0.516 0.539
15 0.394 0.392 0.420
16 0.349 0.345 0.375
17 0.315 0.308 0.341
18 0.315 0.308 0.341
> 18 0.000 0.000 0.000
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In Table 2 we report the estimates F̂T obtained from our Model 1. The value of
p̂ is 0.893. Moreover, we provide the estimator F TW

n obtained by iteration in the self-
consistency equation of Turnbull’s model, as reported in Klein and Moeschberger (1997),
page 129. The Kaplan-Meier estimator FKM

n based only on uncensored and right-censored

observations is also presented. Note that FKM
n is quite close to F̂T and F TW

n and this
is due to the small number of left-censored observations. The fact that the equations
of Model 1 represent a special case of Turnbull’s model equations explains the closeness
between F̂T and F TW

n .
Pointwise confidence intervals and confidence bands for the survival probability are

difficult to obtain in Turnbull’s model (see Wellner and Zhan, 1997, section 6). Such
confidence regions are easily obtained by bootstrapping in our Model 1. In Figure 1
we provide the pointwise confidence intervals for the survival function estimated by the
product-limit estimator F̂T . A number of 5000 bootstrap samples were used.

Figure 1: Pointwise confidence intervals for the survival function for the age at the first use of marijuana

A Appendix

In this section, K denotes a positive constant, not necessarily the same at each appearance
and possibly depending on p.

Lemma A.1 Let f ≥ 0 be a Borel-measurable function. Let H01 (t−) = H0([t,∞]) +
H1([t,∞]) and Hn01 (t) = Hn0([t,∞]) +Hn1([t,∞]). Define

Λn,1(f) =

∫

I

f (t)

Hn01 (t)
Hn0 (dt) and Λ1(f) =

∫

I

f (t)

H01 (t)
H0 (dt) ,

where I = {t : H01 (t) > 0}. Then

E (Λn,1(f))=

∫

I

f (t)P
{
Hn01 (t−) > 0

}
Λ1 (dt)=

∫

I

f (t)
[
1−

{
H01 (t−)

}n]
Λ1 (dt) .
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Proof. Define the measures Nn = n (Hn0 +Hn1) and N0n = nHn0. The empirical
hazard measure Λn,1 may be written under the integral form

Λn,1 ((t, t+ s]) =

∫

(t,t+s]

Nn ([u,∞])−1 N0n (du)

that can be approximated as follows. Let tm,k = t+ (k/2m) s, with 0 ≤ k ≤ 2m, and

Sm (u) =
∑

1≤k≤2m

1{Nn((tm,k−1 ,∞])>0}
Nn ((tm,k−1,∞])

1(tm,k−1 , tm,k ] (u)

and note that

lim
m→∞

Sm (u) =
1{Nn([u,∞])>0}
Nn ([u,∞])

1(t, t+s] (u) .

Since Sm (u) ≤ 1, by dominated convergence theorem,

Λn,1 ((t, t + s]) = lim
m→∞

∫

(t,t+s]

Sm (u)N0n (du)

= lim
m→∞

∑

1≤k≤2m

N0n ((tm,k−1, tm,k])

Nn ((tm,k−1,∞])
1{Nn((tm,k−1 ,∞])>0}.

On the other hand, define An ((t, t+ s]) =
∫

(t,t+s]
1{Nn([u,∞])>0}Λ1 (du) and

Tm (u) =
∑

1≤k≤2m

1{Nn((tm,k−1 ,∞])>0}
H01 ((tm,k−1,∞])

1(tm,k−1 , tm,k ] (u) .

Clearly, limm→∞ Tm (u) = H
−1

01 (u−) 1{Nn([u,∞])>0}1(t, t+s] (u) . Therefore, if t + s ∈ I, by
dominated convergence theorem,

An ((t, t+ s]) = lim
m→∞

∫

(t,t+s]

Tm (u)H0 (du)

= lim
m→∞

∑

1≤k≤2m

H0 ((tm,k−1, tm,k])

H01 ((tm,k−1,∞])
1{Nn((tm,k−1 ,∞])>0}.

Now, by a well-known property of the multinomial law, the law of N0n ((tm,k−1, tm,k])
given Nn ((tm,k−1,∞]) is a binomial with number of trials Nn ((tm,k−1,∞]) and parameter
H0 ((tm,k−1, tm,k]) /H01 ((tm,k−1,∞]) . Use again the dominated convergence theorem and
deduce that

E [Λn,1 ((t, t+ s])] = E [An ((t, t+ s])] .

When t∗ = sup I does not belong to I, consider t + s increasing to t∗ and use the
monotone convergence theorem to deduce E [Λn,1 ((t, t∗))] = E [An ((t, t∗))] . Finally, by
the monotone class theorem we obtain the stated result.

Lemma A.2 Consider (N1, N2, N3) a random vector with a multinomial distribution
M(m; q1, q2, q3), where m is a positive integer and q1 + q2 + q3 = 1. Let c > 0. Then

E

[
1{N1+N2>0}
N1 + cN2

]
≥ (1− qm3 )2

m(q1 + cq2)
.
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Proof. The inequality is a direct consequence of Jensen’s inequality.

Proof of Lemma 3.5. Let J(s−) = 1 if Hn0(s−) + Hn1(s−) > 0 and J(s−) = 0
otherwise. Let us write

W (t) =

∫

[0,t]

X(s)J(s−)

Hn0(s−) + pHn1(s−)

[
Hn0(ds)− Y (s−)/n

H(s−)
H0(ds)

]

+

{∫

[0,t]

X(s)J(s−)

Hn0(s−) + pHn1(s−)

Y (s−)/n

H(s−)
H0(ds)−

∫

[0,t]

X(s)Λ∗p(ds)

}

= : W1(t) +W2(t).

The process W1 is a squared integrable, zero-mean Gt-martingale, since it is obtained as
the integral of the bounded predictable process

1

n

X(t)J(s−)

Hn0(t−) + pHn1(t−)

with respect to the martingale M defined in Lemma 3.4. To complete the proof it
suffices to show that W2 is a submartingale. It is easy to see that, for any t, E(|W2(t)|) ≤
KH0([0, t]) with K a constant depending only on n, p and the process X. To prove the
submartingale condition, let us first consider X(t) ≡ 1. Fix t′ < t. By Fubini’s theorem,
successive conditioning, the properties of the multinomial process and Lemma A.2,

E

[∫

(t′, t]

J(s−)

Hn0(s−) + pHn1(s−)

Y (s−)/n

H(s−)
H0(ds) | Gt′

]
(A.1)

=

∫

(t′, t]
E

[
Y (s−)

H(s−)
E

[
J(s−)

nHn0(s−) + p nHn1(s−)
| Y (s−)

]
| Gt′

]
H0(ds)

≥
∫

(t′, t]
E
[
1{Y (s−)>0}{1− [H2(s−)/H(s−)]Y (s−)}2 | Gt′

] H0(ds)

H0(s−) + pH1(s−)
.

Deduce that E[W2(t) | Gt′ ] ≥ W2(t′), for any t′ < t. The same conclusion can be
obtained when X(t) = La1(a,b](t), with La is Ga-measurable nonnegative random variable,
and when X(t) = L01{0}(t), where L0 ≥ 0 is G0-measurable. Use the Monotone Class
Theorem to complete the proof of the general case (see, e.g., Fleming and Harrington
(1991), section 1.5, for the details).

Lemma A.3 Consider the case where t∗ /∈ I. Assume that condition (3.7) of Theorem
3.6 holds and let Ymax = maxi Yi. Then,

√
nFT ((Ymax, t∗))→ 0, in probability.

Proof. (See Ying, 1989) Let uεn = inf {t :
√
nFT ((t, t∗)) ≤ ε}, ε > 0. Then

P
(√

nFT ((Ymax, t∗)) > ε
)
≤ P (Ymax < uεn) = H ([0, uεn))n

≤
[
1−

{
H0 (uεn−) + pH1 (uεn−)

}]n

≤ [1− pFT ([uεn, t∗))FC ([uεn,∞])]n

≤
[
1− pε

2

n

FC ([uεn,∞])

FT ([uεn, t∗))

]n
→ 0,
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since

0 ≤ FT ([uεn, t∗))

FC ([uεn,∞])
≤
∫

[uεn,t∗)

FT (dt)

FC([t,∞])
→ 0.

Lemma A.4 For a function f on [a, b], let ‖f‖ba denote supa≤t≤b |f(t−)|. Let T01 =

maxi Yi1{Ai 6=2} and Q(t) = {H0(t)+pH1(t)}/{Hn0(t)+pHn1(t)}, t < T01. Then, for any

β ∈ (0, 1), P
{
‖Q‖T01

0 ≥ 1/β
}
≤ 2e(1/β)e−1/β and P

[
‖Y /{nH}‖Ymax0 ≥ 1/β

]
≤ e/β,

where Y (t−) =
∑

i 1{Yi≥t} and H(t−) = P (Y ≥ t).

Proof. Let Tk = maxi Yi1{Ai=k}, k = 0, 1. The event
{
‖Q‖T01

0 ≥ 1/β
}

is included in

the union
{
‖H0/Hn0‖T0

0 ≥ 1/β
}
∪
{
‖H1/Hn1‖T1

0 ≥ 1/β
}
. For each of the last two events

apply Lemma 2.7 of Gill (1983) with the random variable Y 1{A=k}, k = 0, 1. For the
second probability bound, follow the arguments in Remark 1(i) of Wellner (1978).

Proof of Theorem 3.6. a) The inversion formula of Model 1 can be thought as
the composition of three mappings

(
H0, H1, p

) ϕ17−→
(
H0, H0 + pH1

) ϕ27−→ Λ
ϕ37−→ F (A.2)

where ϕ2 is the map (x, y) 7→ −
∫

[0,·](1/y−)dx and ϕ3 is the product-integral mapping z 7→
[0,·](1−dz). The notation y− means that we consider the left-limits of y. The Hadamard

derivative of the map ϕ1 at
(
H0, H1, p

)
is given by (α, β, c) 7→

(
α, α+ pβ + cH1

)
. By

delta-method (Gill, 1989, van de Vaart and Wellner, 1996, section 3.9) applied with ϕ1,
√
n
{(
H0n, H0n + p̂H1n

)
−
(
H0, H0 + pH1

)}
 
(
G0,G2

)
,

in (D [0,∞])2 , where G2 = G0 + pG1 +N H1. The process
(
G0,G2

)
is a tight zero mean

Gaussian process with covariance structure given by (3.6) and

E
{
G0 (t)G2 (s)

}
= H0 (t ∨ s)−H0 (t)H0 (s) +H0 (t)H1 (s)

[
(1− p)

H02 ([0,∞])
− p
]

E
{
G2 (t)G2 (s)

}
= H0 (t ∨ s)−H0 (t)H0 (s)

+
{
H0 (t)H1 (s) +H0 (s)H1 (t)

} [ 1− p
H02 ([0,∞])

− p
]

+p2
{
H1 (t ∨ s)−H1 (t)H1 (s)

}

+H1 (t)H1 (s)
p (1− p)

H02 ([0,∞])
.

Let τ be a point in the interval I =
{
t : H0 (t−) + pH1 (t−) > 0

}
. Let

∫
|dA| denote the

total variation of the càdlàg function t 7→ A (t) . The map ϕ2 is Hadamard-differentiable
on a domain of the type

{
(A,B) :

∫
|dA| ≤ M, B ≥ ε

}
for given M and ε > 0, at every

point (A,B) such that 1/B is of bounded variation. If t is restricted to [0, τ ] , then(
H0n, H0n + p̂H1n

)
is contained in this domain with probability tending to one for M ≥ 1

and sufficiently small ε. The derivative of ϕ2 at
(
H0, H0 + pH1

)
is given by

(γ, η) 7→ −
∫ {

1/
(
H0 + pH1

)
−

}
dγ −

∫ {
η/
(
H0 + pH1

)2

−

}
dH0.
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(The integrals with respect to functions which are not of bounded variation have to be
understood via partial integration.) Use again the delta-method, this time with ϕ2, and

deduce that
√
n(Λ̂− Λ) G3 in D [0, τ ] , where

G3 = −
∫

dG0(
H0 + pH1

)
−
−
∫

G2−(
H0 + pH1

)2

−

dH0. (A.3)

The process G3 is a tight zero mean Gaussian process with the variance provided in
Lemma A.5 below. Finally, apply delta-method with ϕ3 and deduce that

√
n(F̂−F ) G

in D [0, τ ] , where

G (t) = F ((t,∞])

∫

[0,t]

F ([s,∞])

F ((s,∞])
dG3

= −F ((t,∞])

∫

[0,t]

dG0 (s)

H0 (s) + pH1 (s)
−F ((t,∞])

∫

[0,t]

G2(s−)

H0 (s−) + pH1 (s−)
dΛ (s) .

(See also Lemma 3.9.30 in van der Vaart and Wellner (1996) for the derivative of the
product integration.) The process G is a tight zero mean Gaussian process. Its covariance
can be obtained by direct but tedious calculations and therefore we do not provide it here.

b) Concerning the weak convergence on D[0, t∗] when t∗ 6∈ I, note that the variance
of G3 converges to a finite limit when t ↑ t∗, provided that assumption 3.7 holds. We
want to extend the definition of G3 to [0, t∗] by taking the limits along the paths when
t grows to t∗. To prove that G3 indeed has a limit almost surely as t ↑ t∗, first, deduce
the variance of G3(s) − G3(t) using calculations as in the proof of Lemma A.5 below.
Next, use an exponential inequality for the increments of a Gaussian process [see, e.g.,
van der Vaart and Wellner (1996), appendix A.2.2] to suitably bound the probability
P{sups∈[t,t∗) |G3(s)−G3(t)| ≥ ε}. Finally, proceed as Gill (1983), page 52-3, that is use
Borel-Cantelli lemma to deduce that G3 converges almost surely. Since G = ϕ′3(Λ)(G3)
and ϕ′3(Λ) : D[0, t∗] → D[0, t∗] is a continuous linear map, G is a Gaussian process in
D[0, t∗]. Now, to prove the weak convergence of U in D[0, t∗], it suffices to show that

lim
τ↑t∗

lim sup
n→∞

P ( sup
τ≤t≤t∗

|U (t)− U (τ) | > ε) = 0, ∀ε > 0, (A.4)

that is a “tightness at t∗” condition for U . See Pollard (1984), page 70; see also Gill (1983).
(Alternatively, one may prove this tightness property and obtain weak convergence in

D[0, t∗] for
√
n(Λ̂ − Λ). Next, the delta-method ensures the weak convergence for U .

Nevertheless, analyzing U provides more insight on the difficulty to relax assumption
(3.8) in the case p < 1.) The process U can be decomposed

U =
√
n(F̂ − Fn,p) +

√
n(Fn,p − F ∗p ) +

√
n(F ∗p − F ) =: U1 + U2 + U3.

Since the case p = 1 was studied by Gill (1983) and Ying (1989), for the rest of the proof,
consider p ∈ (0, 1). For any τ < t,

U1 (t)− U1 (τ) =
√
n
{
F̂ ((τ, t])− Fn,p ((τ, t])

}

=
√
n

∫

(τ,t]

F̂ ([s,∞])
[
Λ̂(ds)− Λn,p(ds)

]

+
√
n

∫

(τ,t]

[
F̂ ([s,∞])− Fn,p ([s,∞])

]
Λn,p(ds)

= : A1((τ, t]) +B1((τ, t]).
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Easy calculations yield

|A1((τ, t])| ≤ √n |p̂− p|
p

∫

(τ,t]

F̂ ([s,∞]) Λ̂(ds) =
√
n
|p̂− p|
p

F̂ ((τ, t]) .

On the other hand, use Duhamel’s equation to write

∣∣∣F̂ ([s,∞])− Fn,p ([s,∞])
∣∣∣ ≤ |p̂− p|

p
Fn,p ([s,∞])

∫

[0,s)

F̂ ([v,∞])

Fn,p ((v,∞])
Λ̂(dv).

Deduce that

|B1((τ, t])| ≤ √n |p̂− p|
p

Λn,p ((τ, t]) .

Use the first condition in (3.8), Lemma 3.2 and Theorem 3.3 to deduce that

lim
τ↑t∗

lim sup
n→∞

P ( sup
τ≤t≤Ymax

|U1 (t)− U1 (τ) | > ε) = 0, ∀ε > 0.

Next, we have

U3 (t)−U3 (τ) =
√
n

∫

(τ,t]

{F ∗p ([s,∞])−F ([s,∞])}Λ∗p(ds)+
√
n

∫

(τ,t]

F ([s,∞])
[
Λ∗p(ds)−Λ(ds)

]

= : A3((τ, t]) +B3((τ, t]).

First, note that when t∗ 6∈ I and (3.8) holds, there exists some constant K̃ < 1 such that

H2(t−) ≤ K̃H(t−), ∀t ≥ 0. (A.5)

Indeed, by equations (2.2), FC([t∗,∞]) = H2([t∗,∞]) = 0 and for t < t∗,

H2 (dt) = (1− p)FT ([0, t])FC (dt) ≤ K (1− p)FC (dt) = (1− p)KH1 (dt) +KH2 (dt) ,

with K = F ([0, t∗)) < 1. Thus, (A.5) holds with K̃−1 = 1 + (1−K)/{K(1− p)}. Now,

|B3((τ, t])| ≤ √n
{

2

∫

(τ,t]

1{Y (s−)>0}[H2(s−)/H(s−)]Y (s−)F (ds) +

∫

(τ,t]

1{Y (s−)=0}F (ds)

}

≤
∫

(τ,t]

1{Y (s−)>0}
g(Y (s−))

[
Y (s−)/n

]1/2F (ds) +
√
nF ((Ymax, t∗))

≤ K

∫

(τ,t]

1{Y (s−)>0}[
Y (s−)/n

]1/2F (ds) +
√
nF ((Ymax, t∗))

where g(m) = 2
√
mK̃ m, m = 1, 2..., and K is some constant such that g(m) ≤ K, ∀m.

By Lemma A.3,
√
nF ((Ymax, t∗))→ 0, in probability. Next, use Lemma 2.7 of Gill (1983)

to replace Y (s−)/n by H(s−) in the denominator of the last integral above. Since
∫

(τ,t]

1{Y (s−)>0}[
H(s−)

]1/2FT (ds) ≤ (1− p)−1

∫

(τ,t]

FT (ds)

FC([s,∞])

and B3((τ, t∗]) = B3((τ, t∗)), deduce that

lim
τ↑t∗

lim sup
n→∞

P ( sup
τ≤t≤t∗

|B3 ((τ, t]) | > ε) = 0, ∀ε > 0. (A.6)
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For A3, use Duhamel’s equation and calculations as for B3 to deduce that for some K > 0

|A3((τ, t])| ≤ K

∫

(τ,t]

∫

[0,s)

1{Y (v−)>0}[
Y (v−)/n

]1/2F (dv) Λ∗p(ds),

By Lemma 2.7 of Gill (1983) and assumption (3.7), condition (A.6) is satisfied by A3.
Concerning U2, we can write

sup
t∈[τ,t∗)

|U2 (t)− U2 (τ)| ≤ F ∗p (τ, t∗)|Zp(τ)| + sup
t∈[τ,t∗)

F ∗p ((t,∞]) |Zp(t)− Zp(τ)| , (A.7)

with Zp(t) defined in (3.4). First, we prove the “tightness at t∗” condition for Zp. Recall
that J(s−) = 1{Hn0(s−)+Hn1(s−)>0}. By Duhamel’s equation, for any τ < t ≤ t∗,

Zp(t)− Zp(τ) =
√
n

∫

(τ,t]

Fn,p([s,∞])

F ∗p ((s,∞])

J(s−)/n

Hn0(s−) + pHn1(s−)
M(ds)

−√n
∫

(τ,t]

Fn,p([s,∞])

F ∗p ((s,∞])
B(s−)

H0(ds)

H(s−)

= : A2((τ, t])− B2((τ, t]),

where M is the martingale defined in Lemma 3.4 and

B(s−) =
1{Y (s−)>0}

[
1−

{
H2(s−)/H(s−)

}Y (s−)
]2

H(s−)

H0(s−) + pH1(s−)
− J(s−)Y (s−)/n

Hn0(s−) + pHn1(s−)
.

For A2 proceed as in Gill (1983), that is apply Lenglart’s inequality (see also Fleming
and Harrington (1991), Corollary 3.4.1). For this purpose, note that, by definition and
assumption (3.7), the process t 7→ Fnp([t,∞])/F ∗p ((t,∞]) is a bounded, Gt−predictable
process. Deduce that, for each t′ < t∗ and for any ε, η > 0,

P

[
sup

τ≤t≤t′∧Ymax
|A2((τ, t])| > ε

]
≤ η

ε2
(A.8)

+ P

[∫

(τ,t′∧Ymax]

{
Fn,p([s,∞])

F ∗p ((s,∞])

}2 J(s−)
{

1−∆H0(s)/H(s−)
}

{
Hn0(s−) + pHn1(s−)

}2

Y (s−)/n

H(s−)
H0(ds) > η

]
.

Since assumption (3.7) implies F ∗p ([t∗,∞]) > 0, it suffices to bound the last probability
above when the ratio between Fn,p([s,∞]) and F ∗p ((s,∞]) is replaced by a constant.
In this case, use Lemma A.4 and deduce that condition (A.6) is also satisfied by A2.
Finally, it remains to analyze B2 ((τ, t]) . Note that B2 ((τ, t]) is a submartingale in t ≥ τ .
For checking this property follow the steps in the display (A.2) and use the conditional
independence between Hn0(s−) + pHn1(s−) and Fn,p([s,∞])/F ∗p ((s,∞]) given Y (s−).
Now, we can apply Birnbaum-Marshall inequality for t → B2 ((τ, t]) (cf. Birnbaum and
Marshall, 1961). For this we need to bound t 7→ E [B2

2 ((τ, t])] . For any t ≤ t∗,

E[B2
2 ((τ, t])] ≤ Kµ ((τ, t∗))

∫

(τ,t∗)
nE[B2(s−)]

H0(ds)

H(s−)
,
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with µ ((τ, t∗)) =
∫

(τ,t∗)
H(s−)−1H0(ds) and K a constant. Note that

|B(s−)| ≤ H(s−)

H0(s−) + pH1(s−)
+

J(s−)

H0(s−) + pH1(s−)

[
H(s−)− n−1Y (s−)

]

+ J(s−)Y (s−)n−1
[
{H0(s−) + pH1(s−)}−1 − {Hn0(s−) + pHn1(s−)}−1

]
.

By Lemma A.2, inequality (A.5) and the properties of the binomial law,

nE
[
B2(s−)

]
≤ K

H0(s−) + pH1(s−)

for some K > 0. Deduce that t 7→ E [B2
2 ((τ, t])] is bounded by a constant. By Birnbaum-

Marshall’s inequality and assumption (3.7), condition (A.6) is satisfied also by B2. Next,
deduce from above that lim supτ↑t∗ E [Z2 (τ)] <∞. Since F ∗p ((τ, t∗))→ 0 as τ ↑ t∗, deduce
from (A.7) the tightness condition for U2. Conclude that condition (A.4) is satisfied.

Lemma A.5 Let G3 be defined as in equation (A.3). Then

E {G3 (t)G3 (s)} =

∫

[0,t∧s]

{1−∆Λ (u)} dΛ(u)

H01,p (u−)

+

∫

[0,t]

∫

[0,s]

{c(p)g1(u−, v−)− p (1− p) g2(u−, v−)} dH0(u)dH0(v)
{
H01,p (u−)

}2 {
H01,p (v−)

}2 ,

with g1(u, v) = H0 (u)H1 (v)+ H0 (v)H1 (u)+ pH1 (u)H1 (v), g2(u, v) = H1 (u ∨ v) ,
c(p) = (1− p)/H02([0,∞]) and t ∧ s = min(t, s).

Proof. Let H01,p = H0 + pH1. We have

E {G3 (t)G3 (s)} = E

[∫

[0,t]

dG0 (u)

H01,p (u−)

∫

[0,s]

dG0 (v)

H01,p (v−)

]

+E

[∫

[0,t]

dG0 (u)

H01,p (u−)

∫

[0,s]

G2 (v−)
{
H01,p (v−)

}2dH0(v)

]

+E

[∫

[0,t]

G2 (u−)
{
H01,p (u−)

}2dH0(u)

∫

[0,s]

dG0 (v)

H01,p (v−)

]

+E

[∫

[0,t]

G2 (u−)
{
H01,p (u−)

}2dH0(u)

∫

[0,s]

G2 (v−)
{
H01,p (v−)

}2dH0(v)

]

= : I + II + III + IV.

Next,

I =

∫

[0,t]

∫

[0,s]

d
{
H0 (u ∨ v)−H0 (u)H0 (v)

}

H01,p (u−)H01,p (v−)
=

∫

[0,t∧s]

dΛ(u)

H01,p (u−)
− Λ ([0, t]) Λ ([0, s]) ,

II =

∫

[0,t]

∫

[0,s]

duE
{
G0 (u)G2 (v−)

}
dH0(v)

H01,p (u−)
{
H01,p (v−)

}2

= −
∫

[0,t∧s]

Λ([v, t])dΛ(v)

H01,p (v−)
+ Λ ([0, t]) Λ ([0, s])− c(p)Λ ([0, t])

∫

[0,s]

H1 (v−) dΛ(v)

H01,p (v−)
,
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III =

∫

[0,t]

∫

[0,s]

dvE
{
G2 (u−)G0 (v)

}
dH0(u)

H01,p (v−)
{
H01,p (u−)

}2

= −
∫

[0,t∧s]

Λ([u, s])dΛ(u)

H01,p (u−)
+ Λ ([0, t]) Λ ([0, s])− c(p)Λ ([0, s])

∫

[0,t]

H1 (u−) dΛ(u)

H01,p (u−)
,

and

IV =

∫

[0,t]

∫

[0,s]

E
{
G2 (u−)G2 (v−)

}
dH0(u)dH0(v)

{
H01,p (u−)

}2 {
H01,p (v−)

}2

=

∫ ∫
H01,p ((u ∨ v)−) dH0(u)dH0(v)
{
H01,p (u−)

}2 {
H01,p (v−)

}2

+c(p)

∫∫ {
H0 (u−)H1 (v−)+H0 (v−)H1 (u−)+ pH1 (u−)H1 (v−)

}
dH0(u)dH0(v)

{
H01,p (u−)

}2 {
H01,p (v−)

}2

−p(1− p)
∫ ∫

H1 ((u ∨ v)−) dH0(u)dH0(v)
{
H01,p (u−)

}2 {
H01,p (v−)

}2 − Λ ([0, t]) Λ ([0, s]) .

Since
∫ ∫

H01,p ((u ∨ v)−) dH0(u)dH0(v)
{
H01,p (u−)

}2 {
H01,p (v−)

}2 =

∫

[0,t∧s]

Λ([v, t])dΛ(v)

H01,p (v−)
+

∫

[0,t∧s]

Λ((u, s])dΛ(u)

H01,p (u−)
,

deduce the formula for E {G3 (t)G3 (s)} .
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