
I N S T I T U T D E

S T A T I S T I Q U E
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Abstract

This paper revisits some asymptotic properties of the robust nonparametric esti-
mators of order-m and order-α quantile frontiers and proposes isotonized version of
these estimators. Previous convergence properties of the order-m frontier are extended
(from weak uniform convergence to complete uniform convergence). Complete uniform
convergence of the order-m (and of the quantile order-α) nonparametric estimators to
the boundary is also established, for an appropriate choice of m (and of α, respectively)
as a function of the sample size. The new isotonized estimators share the asymptotic
properties of the original ones and a simulated example shows, as expected, that these
new versions are even more robust than the original estimators. The procedure is also
illustrated through a real data set.
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1 Introduction and Basic Notation

Let Ψ be the support of the joint probability measure of a random vector (X, Y ) ∈ Rp+×R+

and let (Ω,A, P ) be the probability space on which the vector X and the variable Y are

defined. Consider the problem of estimating non parametrically the upper boundary of Ψ,

where “upper” is in the direction of the univariate Y . This boundary is assumed to be

a monotone nondecreasing1 function of X and we have a sample (X1, Y1), · · · , (Xn, Yn) of

independent random vectors with the same distribution as (X, Y ).

Let us denote by F (y|x) = F (x, y)/FX(x) the conditional distribution function of Y

given X ≤ x, where F is the joint distribution function of (X, Y ) and FX(x) = F (x,∞).

From now on we assume that x ∈ Rp+ is such that FX(x) > 0. The monotone boundary of

Ψ can then be characterized through the frontier function

ϕ(x) = inf{y ∈ R+|F (y|x) = 1},

which is the upper boundary of the support of the nonstandard conditional probability

measure of Y given X ≤ x.

This kind of problem appears naturally to be useful when analyzing production perfor-

mance of firms, where X represents the vector of inputs (resources of production) and Y is

the output (a quantity of produced goods). In this context, ϕ(x) is the production frontier,

i.e., the maximal achievable level of output for a firm working at the level of inputs x. The

production efficiency of a firm operating at the level (x, y) can then be measured by the

relative comparison of its output y with the reference frontier ϕ(x).

Nonparametric envelopment estimators have been mostly used, like the Free Disposal Hull

estimator (FDH, initiated by Deprins, Simar and Tulkens [6] in the context of measuring

the efficiency of enterprises),

ϕ̂n(x) = inf{y ∈ R+|F̂n(y|x) = 1} = max
i|Xi≤x

Yi,

where F̂n(y|x) = F̂n(x, y)/F̂X,n(x), with F̂n(x, y) = (1/n)
∑n

i=1 1(Xi ≤ x, Yi ≤ y) and

F̂X,n(x) = F̂n(x,∞). The convex hull of the FDH frontier ϕ̂n provides the Data Envel-
1For two vectors x and x′ in Rp the inequality x ≤ x′ has to be understood componentwise. A real valued

function r on Rp is then said to be monotone nondecreasing with respect to this partial order if x ≤ x′

implies r(x) ≤ r(x′).
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opment Analysis estimator (DEA, initiated by Farrell [7] and popularized as linear pro-

gramming estimator by Charnes,Cooper and Rhodes [5]). The statistical inference based

on these estimators is now mostly available either by using asymptotic results or by using

the bootstrap (see Simar and Wilson [14] for a recent survey and Seiford [11] for a survey

and more than 700 references on applications using these estimators). But, by construction,

these estimators envelop all the data points and so, are very sensitive to extreme values.

Original robust non parametric estimators have been suggested recently by Cazals, Flo-

rens and Simar [4]. In place of looking for the full frontier, they estimate a partial frontier

of order m ≥ 1, which can be defined as follows. For a given level x, it is defined as the

expected value of the maximum of m independent random variables Y 1, · · · , Y m, drawn from

the conditional distribution of Y given X ≤ x, i.e.,

ϕm(x) = E[max(Y 1, · · · , Y m)|X ≤ x] =

∫ ∞

0

(1− [F (y|x)]m)dy.

For all finite integer m ≥ 1, ϕm(x) ≤ ϕ(x) and limm→∞ ϕm(x) = ϕ(x). This expected

frontier function of order m can be estimated non parametrically by plugging the empirical

version F̂n(y|x) of the conditional distribution function F (y|x) to obtain

ϕ̂m,n(x) = Ê[max(Y 1, · · · , Y m)|X ≤ x] =

∫ ∞

0

(1− [F̂n(y|x)]m)dy.

An explicit formula is available in order to compute ϕ̂m,n(x), but in practice it is more easy

to approximate the empirical expectation by a Monte-Carlo algorithm (see, e.g.,Florens and

Simar [8]). To summarize the properties of these functions, we have

ϕ̂m,n(x) ≤ ϕ̂n(x), lim
m→∞

ϕ̂m,n(x) = ϕ̂n(x)

√
n(ϕ̂m,n(x)− ϕm(x))→ N

(
0, σ2(x,m)

)
as n→∞,

where an expression of σ2(x,m) is available. By choosing m appropriately as a function

of the sample size n, ϕ̂m(n),n(x) estimates the true frontier function ϕ(x) itself and is more

robust to extreme values than the FDH since it does not envelop all the data points : it is

computed as the expectation of a maximum and not as an observed maximum. An explicit

formula of the order m(n) is given in [4], to sumarize, we must have m(n) = O(n log(n)). In
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this case, this estimator keeps the asymptotic properties of the FDH estimator as derived in

Park, Simar and Weiner [10].

Similarly, Aragon, Daouia and Thomas-Agnan [1] introduce the concept of an order-

α quantile frontier function, which increases w.r.t. the continuous order α ∈ [0, 1] and

converges to the full frontier ϕ(x) as α ↗ 1. It is defined, for a given level x, by the

conditional α-quantile of the distribution of Y given X ≤ x, i.e.,

qα(x) := F−1(α|x) = inf{y ∈ R+|F (y|x) ≥ α}.

A nonparametric estimator of qα(x), which increases and converges to the FDH ϕ̂n(x) as

α ↗ 1, is easily derived by inverting the empirical version of the conditional distribution

function,

q̂α,n(x) := F̂−1
n (α|x) = inf{y ∈ R+|F̂n(y|x) ≥ α}.

As pointed out in [1], this estimator is very fast to compute, very easy to interpret and sat-

isfies very similar statistical properties to those of the nonparametric estimator ϕ̂m,n(x). In

summary, it converges at the rate
√
n, is asymptotically unbiased and normally distributed.

Moreover, when the order α is considered as a function of n such that n(p+2)/(p+1) (1− α(n))→
0 as n→∞, q̂α(n),n(x) estimates the true frontier function ϕ(x) and shares the same asymp-

totic distribution of both the FDH estimator ϕ̂n(x) and the order-m(n) frontier ϕ̂m(n),n(x).

The reliability of the two sequences of estimators {q̂α,n(x)} and {ϕ̂m,n(x)} is analyzed

from a robustness theory point of view in Daouia and Ruiz-Gazen [3]. Both of these nonpara-

metric frontier estimators are qualitatively robust and bias-robust. But the order-α quantile

frontiers can be more robust to extreme values than the order-m frontiers when estimating

the true full frontier since the influence function is no longer bounded for order-m frontiers

when m tends to infinity, while it remains bounded for the conditional quantile frontiers

when the quantile order tends to one. The advantage of the order-m frontiers lies in the fact

that they can be easily extended to the full multivariate case (X ∈ Rp+ and Y ∈ Rq+), where

they can be computed by using a Monte-Carlo algorithm (Simar [13]). This full multivariate

extension has not been obtained for the order-α quantile frontiers.

The drawback of the concepts of these partial frontiers lies in the fact that they are not

necessarily monotone with respect to x, whereas the full frontier is monotone. In this paper,
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we propose an isotonized version ϕ#
m(x) of ϕm(x) and q#

α (x) of qα(x), respectively, which

converges uniformly to the full frontier ϕ(x) as m → ∞ and as α ↗ 1, respectively. In

the same way, we introduce monotone versions ϕ̂#
m,n(x) and q̂#

α,n(x) of the initial estimators

ϕ̂m,n(x) and q̂α,n(x). We first extend the results obtained in [8] about weak uniform consis-

tency of ϕ̂m,n and ϕ̂n to the complete uniform convergence. We also establish the complete

uniform convergence of both ϕ̂m(n),n and q̂α(n),n to ϕ as n → ∞. We then show that the

isotone estimator ϕ̂#
m,n converges completely and uniformly to the monotone order-m frontier

ϕ#
m, and that the monotone versions ϕ̂#

m(n),n and q̂#
α(n),n of the initial estimators ϕ̂m(n),n and

q̂α(n),n share the same strong uniform convergence property of the FDH estimator ϕ̂n to the

full frontier ϕ. We illustrate the method through some numerical examples with real and

simulated data.

2 Monotone Estimators of the Upper Boundary

The partial functions ϕm(x) and qα(x) converge to the nondecreasing full function ϕ(x) as

m → ∞ and as α ↗ 1, respectively, but they are not nondecreasing themselves unless we

assume that the conditional distribution function F (y|x) is nonincreasing as a function of

x (see [4], Theorem A.3, and [1], Proposition 2.5, respectively). Our goal is to make these

partial frontier functions monotone nondecreasing on some given subset D interior to the

support of X in a more general setup, i.e. without relying on such an assumption.

This is achieved through the following isotonization method : we denote by || · || the

sup-norm of a real valued function over the domain D and we assume from now on that this

domain is compact. For a real valued function r defined on D, let us define the following

three functions

ru(x) = sup
x′∈D;x′≤x

r(x′),

rl(x) = inf
x′∈D;x′≥x

r(x′),

r#(x) = (ru(x) + rl(x))/2. (1)

It is clear that ru(x), rl(x) and r#(x) are nondecreasing and that rl(x) ≤ r(x) ≤ ru(x), for

all x in their domain D.
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A natural concept of a monotone order-m frontier can then be defined simply as the

isotonized version ϕ#
m(x) of ϕm(x). This nondecreasing partial function can be estimated

non parametrically by the isotonized version ϕ̂#
m,n(x) of ϕ̂m,n(x).

The basic idea of this monotonization procedure is not new. Mukerjee and Stern [9] use a

similar principle to isotonize a Nadaraya-Watson kernel estimator of the regression function,

and with a slight difference, which is in fact a computational artifact : in their approach,

the sup and inf in (1) are taken over a discrete grid instead of the whole domain D. In the

context of production efficiency measurement, Aragon et al. [2] use the same technique to

isotonize a smoothed estimator of the nonstandard conditional distribution function F (y|x)

with respect to x, but in the nonincreasing sense. They prove that when the initial smoothed

estimator is strongly uniformly consistent and the function x 7→ F (y|x) is nonincreasing for

y fixed, then the isotonized estimator is also strongly uniformly consistent. Their argument

is based on the fact that the # operator, which provides in their approach a nonincreasing

version of r on D, is sup-norm contracting (see [2], Lemma 3.7). In our setup, we only need

to adapt this result to our # operator which rather provides a nondecreasing version of r on

D.

Lemma 2.1. If r and s are two functions defined on D, then

||r# − s#|| ≤ ||r − s||.

We know from Florens and Simar ([8], see the appendix, Proof of Lemma A.1) that ϕ̂m,n

converges uniformly in probability to ϕm as n→∞. By applying Lemma 2.1, we obtain

||ϕ̂#
m,n − ϕ#

m|| ≤ ||ϕ̂m,n − ϕm||,

which implies the weak uniform consistency of ϕ̂#
m,n for ϕ#

m. This result can be improved to

obtain the complete uniform convergence by using the following lemma.

Lemma 2.2. Assume that FX is continuous on the compact D and that the upper boundary

of the support of Y is finite. Then,

||ϕ̂m,n − ϕm|| co.−→ 0 as n→∞.

As an immediate consequence of Lemmas 2.1 and 2.2, we have
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Theorem 2.3.

1. Assume that ϕ and ϕm are continuous on the compact D, for every m ≥ 1. Then,

||ϕ#
m − ϕ|| −→ 0 as m→∞.

2. Under the condition of Lemma 2.2, we have

||ϕ̂#
m,n − ϕ#

m||
co.−→ 0 as n→∞.

3. Under both above conditions, we have

||ϕ̂#
m(n),n − ϕ||

co.−→ 0 as n→∞,

where the integer m(n) ≥ 1 is such that

lim
n→∞

m(n) =∞, lim
n→∞

m(n) (log n/n)1/2 = 0.

Note that the proof of the last result of Theorem 2.3 requires to extend the weak con-

sistency of ϕ̂m(n),n(x) for ϕ(x) proved in [4] to the complete uniform convergence. The next

result gives a more subtle convergence rate of m(n) as n tends to infinity, but the stochastic

convergence here is only in the almost sure sense.

Theorem 2.4. Under the conditions of Theorem 2.3, we have

||ϕ̂#
m(n),n − ϕ||

a.s.−→ 0 as n→∞,

where limn→∞m(n) =∞, and limn→∞m(n) (log log n/n)1/2 = 0.

Making use of Lemma 2.2, we also can improve the weak uniform consistency of the FDH

estimator ϕ̂n by adapting the proof of Florens and Simar ([8], Lemma A.1).

Lemma 2.5. Under the same regularity conditions of Theorem 2.3, we have

||ϕ̂n − ϕ|| co.−→ 0 as n→∞.

Likewise, in place of looking to the α-quantile function qα(x) and its estimator q̂α,n, we

rather concentrate on their isotonic versions q#
α (x) and q̂#

α,n(x).
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Theorem 2.6.

1. Assume that x 7→ qα(x) is continuous on the compact D, for every α ∈ [0, 1]. Then,

||q#
α − ϕ|| −→ 0 as α↗ 1.

2. Under the conditions of Lemma 2.5, we have

||q̂#
α(n),n − ϕ||

co.−→ 0 as n→∞,

where the order α(n) is such that n(1− α(n))→ 0 as n→∞.

Here, the initial estimator q̂α(n),n(x) and its isotone version q̂#
α(n),n(x) estimate the full

frontier ϕ(x) itself. As expected by Aragon et al. ([1], Theorem 4.3), when the order α(n)

converges to 1 at the rate n(p+2)/(p+1) as n → ∞, n1/(p+1)
(
ϕ(x)− q̂α(n),n(x)

)
converges to

a Weibull distribution whose parameters depend on the joint density of (X, Y ) near the

frontier point (x, ϕ(x)).

In practice, to compute the monotone frontier ϕ̂#
m,n (in the same way q̂#

α,n), we use a

discrete grid instead of the whole domain D. For instance, we could consider the minimal

rectangular set with edges parallel to the coordinate axes that covers all the observations

Xi, and then choose a discrete grid Dn = {xn,1, · · · , xn,k} in this rectangular set containing

the unique minimal and maximal (with respect to the partial order “≤”) points of this set

(we could choose Dn to be simply the set of the observation points {Xi} besides the minimal

and maximal points of the minimal envelopment rectangular set). Such a choice makes it

easier to compute both ϕ̂m,n(x) and ϕ̂#
m,n(x) over the rectangular set. For example, if p = 1

and xn,1 ≤ · · · ≤ xn,k, then ϕ̂lm,n and ϕ̂um,n are constant between successive points such that

ϕ̂lm,n(xn,i) = ϕ̂lm,n(xn,i+1) ∧ ϕ̂m,n(xn,i), ϕ̂um,n(xn,i+1) = ϕ̂um,n(xn,i) ∨ ϕ̂m,n(xn,i+1),

for all i = 1, · · · , k − 1. Note that in this case, the choice of Dn = {Xi} happens to be

more natural for the quantile framework since the initial frontier q̂α,n is by construction

constant between successive observations Xi. For the general case (p ≥ 1), first compute

ϕ̂um,n successively along Dn starting from its minimal point, using the fact that

ϕ̂um,n(xn,i) = ϕ̂m,n(xn,i) ∨max
{
ϕ̂um,n(xn,j) : xn,j is an immediate predecessor of xn,i

}
,
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for all xn,i ∈ Dn. Compute also ϕ̂lm,n successively along Dn starting this time from its

maximal point, using the fact that

ϕ̂lm,n(xn,i) = ϕ̂m,n(xn,i) ∧min
{
ϕ̂lm,n(xn,j) : xn,j is an immediate successor of xn,i

}
.

The isotonic order-m frontier ϕ̂#
m,n(x) can be therfore easily computed, for any x in the

rectangular set, as the mean of

ϕ̂um,n(x) = max
xn,i∈Dn|xn,i≤x

ϕ̂um,n(xn,i) and ϕ̂lm,n(x) = min
xn,i∈Dn|xn,i≥x

ϕ̂lm,n(xn,i).

It is clear that a large value of k is necessary to get a good result in practice. We will see a

numerical illustration in Section 4.

Mukerjee and Stern [9] perform a very closely similar isotonization algorithm by using

an appropriate choice of Dn that leads to the strong uniform consistency of their isotonic

estimator. We can easily adapt their setup to our problem by taking ϕ, ϕ̂m(n),n, ϕ̂#
m(n),n,

ϕ̂um(n),n, ϕ̂lm(n),n and D in place of the quantities τ , τ̂n, Gn, G1n, G2n and H in [9] (see Section

2), respectively (the same construction can be done for the quantile framework) :

For δ > 0, let Dδ ⊃ D be the closed δ-neighborhood od D which we assume to be interior

to the support of X. Let the initial estimator ϕ̂m(n),n(x) of the monotone upper boundary

ϕ(x) be defined on Dδ with ϕ̂m(n),n(x) = 0 if F̂X,n(x) = 0. Consider a positive sequence

{bn} tending to 0, and let Dn be the set of vectors in Dδ with components that are integral

multiples of bn. For ϕ̂#
m(n),n(x) to be well defined for x ∈ D (see [9], Equation (2)), we assume

that n is large enough.

As stated by Mukerjee and Stern, if D is rectangular with edges parallel to the coordinate

axes, as is often the case, then we could consider only the minimal subset of Dn that covers

D by convex combinations. The minimal and maximal points of this subset being unique, we

then can isotonize ϕ̂m(n),n(x) over D, for a given order m(n), by applying the computation

method described above.

From a theoritical point of view, since Dn is not contained in D, we cannot apply Lemma

2.1 to obtain the complete uniform convergence of ϕ̂#
m(n),n to ϕ on D (see Theorem 2.3).

However, we can easily adapt the proof of Mukerjee and Stern to keep this asymptotic

property. But such technique of proof requires more stringent conditions compared with
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those of Theorem 2.3. Indeed, if ϕ is uniformly continuous on Dδ and ϕm is continuous on

this compact for every m ≥ 1, then the same arguments used by Mukerjee and Stern (see

[9], the paragraph after Equation (4), p. 78) show that

||ϕ̂#
m(n),n − ϕ|| ≤ sup

x∈Dδ
|ϕ̂m(n),n(x)− ϕ(x)|+Rn,

where the remainder Rn = o(1) in view of the appropriate characterization of Dn and the

uniform continuity of ϕ on Dδ (for more details see [9], Theorem 2, the proof of Equation

(6)). Finally, using the fact that supx∈Dδ |ϕ̂m(n),n(x) − ϕ(x)| co.→ 0 (replace D by Dδ in the

proof of Theorem 2.3 to obtain this result), we obtain the complete uniform convergence of

ϕ̂#
m(n),n to ϕ on D. Under the same regularity conditions, we also get the complete uniform

convergence of q̂#
α(n),n to ϕ on D by using similar arguments.

3 Proofs

Proof of Lemma 2.1. Let M = supx∈D |r(x) − s(x)|. The lemma will follow from the

following sets of inequalities

ru −M ≤ su ≤ ru +M,

rl −M ≤ sl ≤ rl +M.

The two right inequalities follow from taking the supx′≤x (resp : the infx′≥x) in the inequality

s(x′) ≤ r(x′) + M , and the left ones follow from taking the supx′≤x (resp : the infx′≥x) in

the inequality r(x′)−M ≤ s(x′). �

Proof of Lemma 2.2. Let ν < ∞ be the upper boundary of the support of Y and let

x ∈ D. Since ϕ̂n(x) ≤ ϕ(x) ≤ ν with probability 1 (for a proof, see [1], Section 3), we have

with probability 1,

ϕ̂m,n(x) =

∫ �

ϕn(x)

0

(1− [F̂n(y|x)]m)dy =

∫ ν

0

(1− [F̂n(y|x)]m)dy

9



We therefore obtain, with probability 1,

ϕ̂m,n(x)− ϕm(x) =

∫ ν

0

(
[F (y|x)]m − [F̂n(y|x)]m

)
dy

=

∫ ν

0

(
F (y|x)− F̂n(y|x)

)m−1∑

j=0

[F (y|x)]m−1−j[F̂n(y|x)]jdy.

This implies, with probability 1,

|ϕ̂m,n(x)− ϕm(x)| ≤ m

∫ ν

0

|F (y|x)− F̂n(y|x)|dy

= m

∫ ν

0

|F̂X,n(x)F (x, y)− FX(x)F̂n(x, y)|
FX(x)F̂X,n(x)

dy

≤ m

∫ ν

0

F (x, y)|F̂X,n(x)− FX(x)|+ FX(x)|F̂n(x, y)− F (x, y)|
FX(x)F̂X,n(x)

dy

≤ mν

F̂X,n(x)

(
||F̂X,n − FX ||+ ||F̂n − F ||

)
.

Thus, we have with probability 1,

||ϕ̂m,n − ϕm|| ≤
mν

infx∈D F̂X,n(x)

(
||F̂X,n − FX ||+ ||F̂n − F ||

)
. (2)

To complete the proof, it suffices to show that the term on the right-hand side of Inequality

(2) converges completely to 0 as n → ∞. We know from Glivenko-Cantelli Theorem ([12],

see the proof of Theorem A, p. 61) that ||F̂X,n− FX || and ||F̂n−F || converge completely to

0 as n→∞. Hence, it only remains to show that

∃δ > 0 such that
∞∑

n=1

P ( inf
x∈D

F̂X,n(x) ≤ δ) <∞. (3)

Indeed, it can be easily seen that, if {Vn} and {Wn} are two sequences of random variables

s.t. Vn converges completely to 0 and there exists δ > 0 s.t.
∑∞

n=1 P (|Wn| ≤ δ) < ∞, then

Vn/Wn converges completely to 0.

Since | infx∈D F̂X,n(x)− infx∈D FX(x)| ≤ ||F̂X,n − FX || and ||F̂X,n − FX || converges com-

pletely to 0, we obtain
∑∞

n=1 P (| infx∈D F̂X,n(x)− infx∈D FX(x)| ≥ δ) <∞, for every δ > 0.

This yields
∑∞

n=1 P (infx∈D F̂X,n(x) ≤ infx∈D FX(x)− δ) <∞, ∀δ > 0. Thus, we can end the

proof by putting δ = infx∈D FX(x)/2 > 0. �
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Proof of Theorem 2.3. We know from Florens and Simar ([8], see the proof of Lemma

A.1) that ϕm converges uniformly to ϕ as m → ∞. Therefore, by applying Lemma 2.1, we

obtain the first result,

||ϕ#
m − ϕ|| = ||ϕ#

m − ϕ#|| ≤ ||ϕm − ϕ|| −→ 0 as m→∞.

The second result follows from Lemmas 2.1 and 2.2,

||ϕ̂#
m,n − ϕ#

m|| ≤ ||ϕ̂m,n − ϕm||
co.−→ 0 as n→∞.

To prove the last result, first let us show that ||ϕ̂m(n),n−ϕm(n)|| converges completely to 0 as

n → ∞. Let ε > 0. We know from Kiefer’s Inequality ([12], Theorem B, p. 61) that there

exists finite positive constants C1 and C2 such that

P (||F̂n − F || > d) ≤ C1e
−nd2

, P (||F̂X,n − FX || > d) ≤ C2e
−nd2

for every d > 0 and all n ≥ 1. By taking ε/m(n) > 0 in place of d in the above inequalities,

we obtain

P
(
m(n)||F̂n − F || > ε

)
≤ C1e

−nε2/m2(n), P
(
m(n)||F̂X,n − FX || > ε

)
≤ C2e

−nε2/m2(n)

for all n ≥ 1. Since limn→∞ (m2(n) logn) /n = 0, we have (m2(n) logn) /n ≤ ε2/2, for n

large enough. Hence exp(−nε2/m2(n)) ≤ n−2, for all n sufficiently large. This implies

∞∑

n=1

P
(
m(n)||F̂n − F || > ε

)
<∞,

∞∑

n=1

P
(
m(n)||F̂X,n − FX || > ε

)
<∞

showing therefore that m(n)||F̂n − F || and m(n)||F̂X,n − FX || converge completely to 0.

Thus ϕ̂m(n),n converges completely and uniformly to ϕm(n) in view of (2) and (3). Since

limn→∞m(n) = ∞ and limm→∞ ||ϕm − ϕ|| = 0, we have limn→∞ ||ϕm(n) − ϕ|| = 0. Finally,

we obtain the desired result by using the following inequalities,

||ϕ̂#
m(n),n − ϕ|| ≤ ||ϕ̂m(n),n − ϕ|| ≤ ||ϕ̂m(n),n − ϕm(n)||+ ||ϕm(n) − ϕ||.

This completes the proof. �
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Proof of Theorem 2.4. We only need to show that m(n)||F̂n−F || and m(n)||F̂X,n− FX ||
converge almost surely to 0, and then we follow the same setup used to prove the last result

of Theorem 2.3. We have from the law of the iterated logarithm ([12], Theorem B, p. 62),

||F̂X,n − FX || ≤ 2C(FX) (log log n/n)1/2 , ||F̂n − F || ≤ 2C(F ) (log log n/n)1/2

for all n large enough, with probability 1, where C(FX) and C(F ) are two finite positive

constants. Since limn→∞m(n) (log logn/n)1/2 = 0, the conclusion follows directly from the

above inequalities. �

Proof of Lemma 2.5. Let ε > 0 and n ≥ 1. Since ϕm converges uniformly to ϕ as m→∞,

we have

∃mε such that ||ϕmε − ϕ|| < ε/2. (4)

We also have in view of Lemma 2.2,
∞∑

n=1

P (||ϕ̂mε,n − ϕmε || > ε/2) <∞. (5)

We know that ϕ̂mε,n(x) ≤ ϕ̂n(x) ≤ ϕ(x) with probability 1, for any x ∈ D. Here, we need

to extend this result to show that

∀x ∈ D, ϕ̂mε,n(x) ≤ ϕ̂n(x) ≤ ϕ(x) (6)

with probability 1. We know that y ≤ ϕ(x) for any (x, y) ∈ Ψ such that FX(x) > 0. Since the

random variable FX(Xi) is uniform on (0, 1), it is almost surely strictly positive, and since

(Xi, Yi) ∈ Ψ almost surely, we have Yi ≤ ϕ(Xi) with probability 1. Put Ωi = {Yi ≤ ϕ(Xi)},
i = 1, · · · , n. We have P (Ωi)=1, for i = 1, · · · , n. Let Ω0 = ∩ni=1Ωi. Then P (Ω0) = 1. To

prove (6), it is sufficient to show that Ω0 ⊂ {∀x ∈ D, maxi|Xi≤x Yi ≤ ϕ(x)}. If ω ∈ Ω0, then

Yi(ω) ≤ ϕ(Xi(ω)), for all i = 1, · · · , n. In particular, we obtain by using the monotonicity

of ϕ,

∀x ∈ D, ∀i such that Xi(ω) ≤ x : Yi(ω) ≤ ϕ(Xi(ω)) ≤ ϕ(x).

Hence, maxi|Xi(ω)≤x Yi(ω) ≤ ϕ(x) for any x ∈ D, and thus, ω ∈ {∀x ∈ D, maxi|Xi≤x Yi ≤
ϕ(x)}. This ends the proof of (6). Now we obtain by using (6),

||ϕ̂n − ϕ|| ≤ ||ϕ̂mε,n − ϕ|| ≤ ||ϕ̂mε,n − ϕmε ||+ ||ϕmε − ϕ||
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with probability 1. Combining with (4), we get

P (||ϕ̂n − ϕ|| > ε) ≤ P (||ϕ̂mε,n − ϕmε ||+ ε/2 > ||ϕ̂mε,n − ϕmε ||+ ||ϕmε − ϕ|| > ε)

≤ P (||ϕ̂mε,n − ϕmε || > ε/2) .

Thus
∑∞

n=1 P (||ϕ̂n − ϕ|| > ε) <∞, in view of (5). �

Proof of Theorem 2.6. We know from Aragon et al. ([1], Proposition 2.4) that qα

converges uniformly to ϕ as α↗ 1 and so, we obtain the first result by using Lemma 2.1,

||q#
α − ϕ|| ≤ ||qα − ϕ|| −→ 0 as α↗ 1.

It follows from [1] (see the appendix : last inequality of the proof of Theorem 4.3) that, for

any α > 0 and all x ∈ D,

0 ≤ ϕ̂n(x)− q̂α,n(x) ≤ n(1− α)νF̂X,n(x)

with probability 1, where ν < ∞ denotes the upper boundary of the support of Y . This

implies, for any α > 0,

||ϕ̂n − q̂α,n|| ≤ n(1− α)ν
(
||F̂X,n − FX ||+ ||FX ||

)

with probability 1. Therefore, by choosing α as a function of n such that n (1− α(n))→ 0

as n → ∞, we obtain by using Glivenko-Cantelli Theorem and the continuity of FX on D

(||FX || <∞),

||ϕ̂n − q̂α(n),n|| co.−→ 0 as n→∞. (7)

Thus, we get by applying Lemma 2.1,

||q̂#
α(n),n − ϕ|| ≤ ||q̂α(n),n − ϕ|| ≤ ||q̂α(n),n − ϕ̂n||+ ||ϕ̂n − ϕ||

which converges completely to 0 as n→∞, in view of (7) and Lemma 2.5. �

4 Numerical Illustration

In this section, we illustrate our concept of monotone partial frontiers through two examples,

one with a simulated sample and one with a real data set.
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4.1 Example 1

First we simulate a sample of n = 100 observations (xi, yi) according the data generating

process Y = exp (−5 + 10X)/(1 + exp (−5 + 10X)) exp (−U), where X is uniform on (0, 1)

and U is exponential with mean 1/3.
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Figure 1: n = 100: The initial estimators q̂.93,n and ϕ̂8,n on the left and their isotonized

versions q̂#
.93,n and ϕ̂#

8,n on the right. Solid line is for m = 8 and dotted line for α = .93.
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Figure 2: n=105: Same as above with 5 outliers included.

On the left-hand side of Figure 1, we plot in dotted line the quantile frontier q̂α,n of

order α = .93, and in solid line the frontier ϕ̂m,n of order m = 8 (computed with B = 500

Monte-Carlo draws). Here, the quantile frontier q̂.93,n is everywhere above the frontier ϕ̂8,n.
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The isotonized versions of these frontiers are displayed on the right-hand side. For the

computations, we simply define D as a discrete grid of n points equispaced between the min

and the max of the observations.

In order to test the robustness of the isotonic estimators q̂#
.93,n and ϕ̂#

8,n with respect to

the initial ones, we add in the data set five outliers, indicated by “*” in Figure 2, and we

plot the same frontier estimators as above. We remark that both isotone frontiers are more

resistant to the five outliers than the initial ones. This is natural since, by construction (see

Equation (1)), the monotone function r# is everywhere below the monotone upper boundary

ru of the initial function r.

4.2 Example 2

We examine here real data in an univariate case: the data are reported by Cazals et al. [4]

and Aragon et al. [1] on frontier analysis of 9521 French post offices observed in 1994, with

X as the quantity of labor and Y as the volume of delivered mail.
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Figure 3: n = 4000: On the left, the frontiers q̂.999,n in dotted line and ϕ̂600,n in solid line.

On the right, the monotone frontiers q̂#
.999,n in dotted line and ϕ̂#

600,n in solid line.

In this illustration, we only consider the n = 4000 observed post offices with the smallest

levels xi plotted in Figure 3 on the left-hand side, along with the quantile frontier q̂α,n of

order α = .999 in dotted line, and the frontier ϕ̂m,n of order m = 600 in solid line (B = 500).

The isotonized versions of these extreme frontiers are displayed on the right-hand side of
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Figure 3. Here also, we use a discrete grid of only 100 points equispaced between the min

and the max of the first 4000 observations.

It is clear that the monotone estimators q̂#
.999,n and ϕ̂#

600,n are more resistant to the super-

efficient post offices than their initial versions q̂.999 and ϕ̂600,n.

More generally, for any orders α and m, the isotonized partial frontiers q̂#
α and ϕ̂#

m,n are

more robust to extreme values than the initial versions q̂α and ϕ̂m,n introduced by Aragon

et al. [1] and Cazals et al. [4], respectively, due to the average in the definition of the #

operator.

5 Conclusions

Order-m frontier and order-α quantile frontier functions are very useful to provide non

parametric estimators of boundaries which are more robust to outliers and/or extreme values

than the usual envelopment estimators (FDH/DEA).

Their monotonized versions proposed in this paper are very easy to compute and provide

estimators sharing the same properties as the original ones.

These new estimators appear to be even more robust to outliers than their original

versions.
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