Model Correction using a Nuclear Norm Constraint

Ning Hao, Lior Horesh, Misha Kilmer

Ragon Institute
IBM Thomas J. Watson Research Center
Tufts University
Thanks: NSF:CIF:SMALL 1319653, NSF-DMS 0914957

Householder Symposium XIX, June 2014
Motivation

We create mathematical models to simulate the operation of a real world or system.

Not surprisingly, the models will contain some error:
- simplifications for computational tractability
- linearization, numerical error
- boundary conditions or geometry
Motivation

We create mathematical models to simulate the operation of a real world or system.

Not surprisingly, the models will contain some error:

- simplifications for computational tractability
- linearization, numerical error
- boundary conditions or geometry

“All models are wrong . . . but some are useful “

George E. P. Box, 1987
Motivation

We create mathematical models to simulate the operation of a real world or system.

Not surprisingly, the models will contain some error:

- simplifications for computational tractability
- linearization, numerical error
- boundary conditions or geometry

“All models are wrong . . . but some are useful “
George E. P. Box, 1987

Thinking outside the Box, some models can be made less wrong / more useful. This is the subject of today’s talk.
Problem Definition

Let \(\mathcal{F} : \mathbb{R}^n \rightarrow \mathbb{R}^m \) be “true” operator taking input \(x \in \mathbb{R}^n \) to observable space. Let \(d \in \mathbb{R}^m \) be an observation obtained as

\[
d = \mathcal{F}(x) + \epsilon
\]

where \(\epsilon \) represents measurement noise.

Goal: Formulate and solve a model correction optimization problem to recover an \(\mathcal{F} \) that is only partially specified. In this talk, assume \(A \) is known and

\[
\mathcal{F}(x) = A(x) + B(x).
\]

Model correction problem is to recover \(B \). Need additional constraints on \(B \) to obtain a well-posed optimization problem.
Motivating Test Problem

Discrete ill-posed problem (e.g. deblurring, Xray-CT)

\[Ax = d + \epsilon. \]

If operator not known exactly model should be replaced by

\[(A + B)x = d + \epsilon.\]

While \(B \) is unknown, and in general \(x \) is unknown, we assume we can sample input space and have access to corresponding output realizations for each of the samples.
Sample Average Approximation

SAA\(^1\) : Expectation wrt the input space & the measurement noise approximated by a sample ave. est. of a random sample.

\[
\hat{B} = \arg\min_B \frac{1}{n_x n_\epsilon} \sum_{j=1, j=1}^{n_x, n_\epsilon} D \left((A(x_i) + B(x_i)) - d_{ij} \right)
\]

subject to constraint on \(B\), \(n_x\) is the number of input draws, \(n_\epsilon\) is number of data realizations for each input realization.

Problem \((A(x) = Ax, B(x) = Bx, D(y) = \|y\|^2_2)\)

\[
\hat{B} = \arg\min_B \frac{1}{n_x n_\epsilon} \sum_{i=1, j=1}^{n_x, n_\epsilon} \|(A + B)x_i - d_{i,j}\|^2_2,
\]

subject to a structural constraint on \(B\).

Restrictions on Operator Structure

Many constraints on B possible. Choose rank-based:

Problem

$$\hat{B} = \arg\min_B \| (A + B)X - D \|_F^2$$

$$\text{s.t. } \text{rank}(B) \leq \frac{\delta}{2}$$

Relax the constraint:

Problem

$$\hat{B} = \arg\min_B \| (A + B)X - D \|_F^2$$

$$\text{s.t. } \| B \|_* \leq \frac{\delta}{2}$$
Optimization Problem with Nuclear Norm Regularization

Several options for solving the optimization problem[1]

- Interior Point Methods
- Alternating Direction Method of Multipliers (ADMM)
- Projected Sub-Gradient Method
- More recent work by Jaggi and Sulovsky: recast the optimization problem over positive semidefinite matrices with unit trace and then apply Hazan’s algorithm.

[1]Hao, Horesh, & K., “Nuclear norm optimization and its application to observation model specification,” in Compressed Sensing and Sparse Filtering, 2014
Hazan’s Algorithm

Hazan’s Algorithm deals with problems of the form:

$$\min_{Z \in S} f(Z)$$

where f is convex and S is the set of all symmetric positive semidefinite $d \times d$ matrices with unit trace.

Each iteration involves the calculation of a single approximate eigenvector of a matrix of size of $d \times d$.

Sparse approximation solutions to semidefinite programs by Hazan, E. 2008
Algorithm

From Jaggi and Sulovksy “A Simple Algorithm for Nuclear Norm Regularized Problem” 2010, for any non-zero matrix $B \in \mathbb{R}^{n \times m}$ and $\delta \in \mathbb{R}$:

$$\|B\|_* \leq \frac{\delta}{2} \iff \exists \text{ symmetric } M, N \text{ s.t.}$$

\[
\begin{pmatrix}
M & B \\
B^T & N
\end{pmatrix} \succeq 0
\]

and

$$\text{Tr}(M) + \text{Tr}(N) = \delta.$$
Steps

Let $Z = \begin{pmatrix} M & B \\ B^T & N \end{pmatrix}$.

- Define $\hat{f}(Z) = f(B) = \| (A + B)X - D \|_F^2$.
- Want to solve
 \[
 \min_Z \hat{f}(Z)
 \]
 s.t. $Z \in S^{(m+n) \times (m+n)}$, $Z \succeq 0$, $\text{Tr}(Z) = \delta$

- Scale all matrix entries by $\frac{1}{\delta}$
- Apply Hazan’s algorithm, then unscale
Algorithm

Input: \(f, v_0 \in \mathbb{R}^{(m+n) \times 1} \) with \(||v_0|| = 1 \); scaled matrices

Initialize: \(Z_1 = v_0v_0^T \)

for \(k = 1 \) until convergence do

Extract \(B_k = Z_k(1 : m, m+1 : m+n) \)

Compute \(\nabla f_k := ((A + B_k)X - D)X^T \)

We have \(\nabla \hat{f}_k := \begin{pmatrix} 0 & \nabla f_k \\ \nabla f_k^T & 0 \end{pmatrix} \)

Compute \(v_k := \text{eigs}(-\nabla \hat{f}_k, 1, LA') \)

Line search for step length \(a_k \)

Update \(Z_{k+1} = Z_k + a_k(v_kv_k^T - Z_k) \)

end for

Return \(\hat{B} = \delta \cdot Z(1 : m, m+1 : m+n) \)
Numerical Examples

- Mimic the semi-blind deconvolution problem, only an approximation to blurring operator is known a-priori.
- 100 MR images from the Auckland MRI Research group database.
- Pre-process the images by cropping the watermark and resizing the cropped images to the size of 55×55.
- Randomly choose 80 images (sampled integers from 1:100 uniformly) to serve as the training set and 20 of remainder as the test set.

http://atlas.scmr.org/download.html
Example 1

- Let $T(b_w, \sigma)$ be symmetric, doubly block Toeplitz matrix T that models blurring of an image by a Gaussian point spread function; b_w, σ control (block) bandwidth and blur.
- $A = T(4, 4)$
- B defined from singular triples of $T(3, 2)$ numbered 110 to 120.
- Compute $D = (A + B)X + N$ where N’s columns have zero mean, white Gaussian noise such that the noise to signal ratio for all measured data is .5 percent.
- Run 120 iterations. Compare the best TSVD regularized solutions using the SVDs of $A, A + B, A + \hat{B}$.
True Blurred Training Images
\[AX \text{ vs } (A + B)X \]
Rel. Errors, TSVD recons, 20 from test set
Example 1, Test Slice 16
Rel. Errors after 400 iterations
Enforcing Different Structure

What if \(B(x) \neq Bx \), but rather \(B(x) = K[B]x \)?

Example [Kamm & Nagy, 1998] Let \(v \) be of length \(n \), \(n \) odd, \(\text{toep}(v) \) creates an \(n \times n \) banded Toeplitz matrix with \(v(\frac{n+1}{2}) \) as the diagonal entry:

\[
\text{toep} \left(\begin{bmatrix} a \\ b \\ c \end{bmatrix} \right) = \begin{bmatrix} b & a & 0 \\ c & b & a \\ 0 & c & b \end{bmatrix}
\]
Additional Structure from B

Given $n \times n$ B, make a BTTB matrix from blocks $\text{toep}B(:,i)$ in a similar manner.

For B with 3 columns:

$$K[B] = \begin{bmatrix}
\text{toep}(B(:,2)) & \text{toep}(B(:,1)) & 0 \\
\text{toep}(B(:,3)) & \text{toep}(B(:,2)) & \text{toep}(B(:,1)) \\
0 & \text{toep}(B(:,3)) & \text{toep}(B(:,2))
\end{bmatrix}.$$
Convexity, Constraint Revisited

It is possible to show that
\[K[B]x = K[\text{reshape}(x, n, n)]\text{vec}(B). \]

So,
\[\sum \|Ax_{ij} + B(x_{ij}) - d_{ij}\|_F^2 \]
still convex in entries of \(B \)

Significance of the (ideal) rank-based constraint on \(B \):

\[B = \sum_{i=1}^{k} \sigma_i u_i v_i^T \Rightarrow K[B] = \sum_{i=1}^{k} \text{toep}(\sqrt{\sigma_i} v_i) \otimes \text{toep}(\sqrt{\sigma_i} u_i), \]

Algorithm now cheap - matrix of partials is now \(n \times n \), matvecs with FFTs.
Example 2

- $A = T(10, 4)$
- $B = T(7, 3.1) + T(4, 2.2) + T(5, 3.5)$
- Same testing setup as before (random selection of 80 images) and testing on the remainder, Gaussian $\frac{1}{2}$ percent noise added (once per test image).
Relative Squared Convergence Error

![Graph showing relative squared convergence error over iterations and squared relative errors.](image)
Difference in Data Space: \[|BX_{train}| \]
Difference in Data Space: $| (B - \hat{B}) X_{train} |$
Errors on 20 Test Data

\[
\frac{\|AX-(A+B)X\|_F}{\| (A+B)X \|_F} \quad \text{vs.} \quad \frac{\| (\hat{B}-B)X \|_F}{\| (A+B)X \|_F}
\]
One Extension to Tensors

B is order > 2 tensor from which we define $K[B](x)$.

$B \in \mathbb{R}^{n \times n \times n}$, $B = \sum_{i=1}^{r} u_i \circ v_i \circ w_i \Rightarrow K[B]$ to a sum of 3-way Kronecker products of structured matrices

But what do we mean by $\|B\|_\star$?
One Extension to Tensors

B is order > 2 tensor from which we define $K[B](x)$.

$B \in \mathbb{R}^{n \times n \times n}$, $B = \sum_{i=1}^{r} u_i \circ v_i \circ w_i \Rightarrow K[B]$ to a sum of 3-way Kronecker products of structured matrices

But what do we mean by $\|B\|_*$?

More thinking outside the Box....
One Extension to Tensors

B is order > 2 tensor from which we define $K[B](x)$.

$B \in \mathbb{R}^{n \times n \times n}$, $B = \sum_{i=1}^{r} u_i \circ v_i \circ w_i \Rightarrow K[B]$ to a sum of 3-way Kronecker products of structured matrices

But what do we mean by $\|B\|_*$?

Use $\|B\|_{\text{TNN}}$ definition [Hao, 2014] based on tSVD [K. & Martin, 2011].
Current & Future Work

Other examples (PDEs) (thanks: Raya Horesh, IBM Watson)
Current & Future Work

- Tensors
- Other examples (PDES)
- Other choices for \mathcal{D}
- Investigate other possible constraints on the operator (nonlinear correction).